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Overview 

 Wave propagation, principles and techniques, their applications  
      in structural health monitoring 
 
 
 Computational paradigm: Spectra vs. Boundary Value Problem (BVP) 
      How small is the wavelength or how large is the structure? 
 
 
 A Damage Force Indicator (DFI) approach:  
 
                  Spectral properties   +   BVP   +   Sensor Network 
 
      The issue is now how large is the sensor network: A measurement  
      paradigm  
 
 
 Experimental demonstration 
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Wave propagation, principles and techniques, their applications  
in structural health monitoring 
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(a) Interior-Exterior Scattering 

(b) Vibration 
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Boundary Value Problem (BVP) 
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Computational paradigm: Spectra vs. Boundary Value Problem 
How small is the wavelength or how large is the structure? 
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Spectral expansion 

h-p interpolation in BVP 
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where let m be the number of discretization in x  with uniform element size h 

Let  be the error 1 norm in computed u by solving BVP using h-p FE. The 
system size is given by  

3
sf mAM 
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Computational paradigm: Spectra vs. Boundary Value Problem (BVP) 
How small is the wavelength or how large is the structure? 
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Equivalently, the truncation in the spectral expansion which corresponds to 
the discretization in h-p gives  

Solving wave propagation in 3D large scale structures using spectral FE 
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Spectral Finite Element Method 

Characteristic system: 0uF  jnjk ~),(

0),(Det njkFRoots kj , j=1,…,J : 

(m  m)  
m = no. of wave equations 

Generic field vector : )1()()()1(
~),(),(ˆ   JJJjJmmn xkx uΛRu 0
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Nodal vector of field variables : 
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Transformation of u and f from time domain to frequency domain: 



Aerospace Engineering IISc 

Force field: 
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Nodal force vector: 
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The assembled finite element system is solved at each n , n=1,…,N,  
where N is the Nyquist frequency. Time domain fields (u,f,,) are 
computed by inverse FFT of the corresponding spectral amplitudes. 

Field interpolation : ee
n
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Spectral Finite Element Method 
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Axial-Flexural-Shear Coupled Waves in Composite 

Wave equations: 
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Constitutive model: 
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Surface-breaking cracks 
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Matrix cracks 
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Damage Force Indicator (DFI) approach:  
 
Spectral properties   +   BVP   +   Sensor Network 
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Spectral Finite Element 

Reduced-order model DFI and Real-time Estimates 
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Baseline structure 

Structure with damage 
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Damage Force Indicator (DFI) approach:  

DFI 
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Experimental demonstration  

crack 
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Quantitative NDE 

SERR-DFI curve 
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Quantitative NDE 

SERR-DFI curve 
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Progressive failure monitoring 
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Conclusions 

•  A Damage Force Indicator (DFI) approach is developed by which the   
    location and severity of damage can be monitored without actually   
    knowing the detail onset of the damage or modeling it. 
 
•  The method uses the dynamic stiffness matrix of the healthy global or    
    substructure as model input. This matrix must adequately include the wave  
    propagation characteristics over the frequency band of measurement. 
 
•  The model can accommodate significant amount of uncertainty in the 
    boundary conditions as well as in measurement 
 
•  The approach does not require measurement of the source disturbances   
    which act as the diagnostic signals. 
 
•  Experimental demonstration shows that real-time monitoring of progressive   
    failure is possible. 
 
•  A real system development would require a fault tolerant network of MEMS   
   sensors and actuators 


