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Abstract  

This thesis presents a reduced order modeling of aircraft wing; a 2D beam-

frame model is formed by combining 1D beam elements. The formulation of 

dynamic stiffness matrix of 2D beam-frame model is performed using Spectral 

finite element method. 

Dynamic response analysis for 1D rod elements, 1D beam elements and 2D 

frame has been performed using spectral finite element method. Dynamic 

response analysis for 2D Beam-Frame model of the wing for two different cases 

is also been performed. 
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Chapter 1  

Introduction 

1.1 Introduction 

Studies involving the monitoring, detection and arrest of the growth of 

flaws such as cracks constitute Structural Health Monitoring (SHM). It is a type of 

inverse problem where in the presence of damage needs to be detected from the 

known input and the measured output. Small size damage affects only the higher 

order modes leaving the lower modes unchanged.  Effects of damages of smaller 

dimensions can be captured only at higher frequencies. To assess the presence 

of small size damage, one needs a mathematical model that can capture the high 

frequency response of the damaged structure with small problem sizes.  

Conventional Finite element modeling is not suitable for high frequency analysis.  

To solve the wave equation exactly the time domain PDE is transformed to 

frequency domain ODE. Wave propagation [1] based diagnostic tool is suitable 

for this kind of analysis. Spectral finite element method (SFEM) is the most 

efficient computational method for wave propagation analysis in structures [2]. 

Identification of damages in structure under dynamic loading requires 

efficient numerical model based tools to solve the resulting inverse problem. 

Often it is possible, as is the case in the present approach, to estimate the 

location and severity of damage by solving a forward problem. One of such 

solution to the problem is termed in our previous works as the Damage Force 

Indicator (DFI) approach. 

The extension of the previously reported computational and experimental 

developments [1, 2] based on the DFI approach is given in [3]. It is essentially 
concerned with the use of a sophisticated computational model, namely the 
dynamic stiffness matrix with essential spectral properties and real-time 

measurement using a sensor-actuator network. It consists of a model-free 
approach, meaning the model of the damaged structure is not essential, such 

that a dynamic stiffness of the baseline structure is sufficient to identify the 
location of damage and its influence on the force transmission characteristics.  

 

In the present work we attempt to address various modeling and 
computational issues in constructing the base-line structural dynamic model data 

for complex structures, starting with a 2D frame and then 2D Beam-Frame model 
with higher geometric complexities. In practical situations, the DFI, which is a 
measure of the load transmission capacity of the damaged structure, can be 
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obtained easily from the measurement of dynamic responses at the nodal 
locations.  

 
In many large-scale engineering problems efficient handling of the discretized 

computational model becomes essential. Use of a reduced-order model (ROM) 

derived from finite element (FE) model of the original system is of particular 

interest in such problems. In computational structural mechanics, applications of 

ROM is useful in global/local analysis, reanalysis and structural optimization, 

eigenvalue problem, structural vibration and buckling, sensitivity studies and 

control parameter design, model update and damage detection. Different non-

structural problems related to heat transfer, fluid-structure interaction and other 

linear and non-linear steady-state boundary value problems have also been 

analysed using ROMs. A detail review on the above aspects can be found in [19], 

Woerkom [20] carried out an elaborate survey of order reduction methods for 

application in flexible spacecraft dynamics. An applications of ROM in high 

frequency vibration of linear time invariant flexible elastic structures is found in 

[10]. 

The computational issue here is to reduce the on-line computational cost 
as much as possible by taking advantage of the parallelism that exists between 

off-line model construction and real-time data acquisition from a sensor network.  
 
In the DFI approach, the diagnostic analysis is performed over a chosen 

frequency band. This means that we do not separate out the steady-state 
vibration from the propagating waves. This simplifies the tasks of signal 

generation and processing to a great extent. Also we can take note of the fact 
that the interacting wavelengths must be in the order of the size of the damages 
or smaller. This size versus wavelength effect leaves the possibility that the DFI 

can be computed over many frequency sub-bands in order to identify the 
damage size.  

 
Identification of the location and size of the damage using acoustic wave 

have been demonstrated successfully [4-7]. In [4-7] the damage problem is 

posed as a inverse problem, Here the damage model is generated as a 
assembly of 1D beam elements and solved for dynamic response characteristics 

of the damaged model.  

For structures with known material properties, geometry and boundary 

conditions, a practical and reliable prediction based on the spectral analysis can 
be made by selective use of the excitation/measurement frequency band over 
the wave dispersion curves. However, these identified parameters alone cannot 

provide sufficient information for estimating the damage severity, unless a 
second set of simulation/experiment has to be performed. This task may be 

difficult due to time constraints in the operation of a SHM system. Therefore, it 
would always be advantageous if one can use an integrated scheme, where a 
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numerical model can be directly used to correlate the acoustic sensor signals 
with the fracture (or any other form of damage) parameters under the in-service 

loading conditions.  

Since it is useful to deal with the frequency spectra obtained from 
broadband sensors, one can use the DFI or similar frequency domain measures, 
which can be computed quickly from spectral response at various locations of the 

structure. From the DFI vector, if it is identified that the damage exists between 
two sensor locations, then the same set of data can be used to correlate, for 

example, the Strain Energy Release Rate (SERR) and further details regarding 
precise location from the arrival time of high frequency signals.  

 

In the design of vehicles, such as automobiles, aircraft, spacecraft, or 

submarines, it is important to be able to accurately predict dynamic behavior of 

the structure. With the extremely high cost of building physical prototypes of 

these vehicles, there is a growing emphasis on analysis of computer models. In 

this dissertation, Spectral analysis for a reduced order model of structurally 

complex aircraft wing is undertaken to explore issues associated with frequency 

response analysis to practical structures. Of primary interest is the trade-off 

between computational efficiency and accuracy. Comparisons of the dynamic 

response measured at the tip of the wing for varying joint stiffness of one of the 

joint is laid out. 

Dynamic response analysis tools used by the aerospace industry rely 

heavily on a linear approach. Commercial finite element codes make a modal 

frequency response of a complicated structure straightforward, even for large 

degree-of-freedom systems. However, this approach is not suitable for predicting 

the response of aircraft structures when they respond to high dynamic loading in 

a geometrically nonlinear manner. A nonlinear dynamic analysis in physical DoFs 

is computationally prohibitive, especially for non-deterministic problems involving 

long simulation times. It is common practice to reduce the system size by 

modeling just a portion of the structure e.g. instead of performing analysis for the 

whole aircraft wing, we can do it for a two 2-dimensional models one along the 

span of the wing and another along the chord wise direction of the wing. In this 

dissertation our emphasis will be to go for a reduced order model of aircraft wing, 

a reduction in one dimension. However, with such an approach, important global 

dynamics are lost because the assumption taken while modeling the reduced 

order model will not be valid in the practical scenario and also the boundary 

conditions cannot be accurately modeled in a spectral analysis. 
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1.2 Research Objectives 

The primary purposes for this study are to: 

1. Formulate a reduced order model of the aircraft wing which should be 

amenable to solve for dynamic characteristics of aircraft wing with scope 

of incorporating structural damage and related simulation. 

2. Formulation of dynamic stiffness for the reduced order model of aircraft 

wing using spectral finite element method. 

3. Perform frequency response analysis for the reduced order model of 

aircraft wing. 

1.3 Outline of thesis 

Chapter 2 provides background information for the study of aircraft structures 

with the component wise discretization.  

Chapter 3 includes a detailed understanding of formulation for spectral finite 

element method for 1D elements and 2D frames.   

Chapter 4 focuses on the reduced order modeling of aircraft wing and its 

formulation using spectral finite element method 

Chapter 5 discusses the results obtained using the spectral finite element 

method for 1D elements, 2D frame and also results obtained for beam-frame 

model of the aircraft wing using the spectral finite element method.   

Chapter 6   Provides the summary and benefits of the study. 
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Chapter 2  

Review of Aircraft Structural components in context of SHM 

This chapter presents the background information on the aircraft structural 

design and its components. It also gives an insight of load transfer from one 

component to other. 

2.1  Aircraft structural design and its components 

Aircraft structural design is a subset of structural design in general, 

including ships, land vehicles, bridges, towers, and buildings. All structures must 

be designed with care because human life often depends on their performance. 

Structures are subject to one-way and oscillating stresses, the latter giving rise to 

fatigue. Metal structures are subject to corrosion, and some kinds of corrosion 

are accelerated in the presence of stress. Aircraft structures are designed with 

particular attention to weight, for obvious reasons.  

The first aircraft had two wings made of light weight wood frames with cloth 

skins, held apart by wires and struts. The upper wing and the struts provided 

compression support while the lower wing and the wires supported tension loads.  

In the 1920s, metal began to be used for aircraft structure. A metal wing is a 

box structure with the skins comprising the top and bottom, with front and back 

formed by I-beams called spars, interior fore-aft stiffeners called ribs, and in-out 

stiffeners called stringers. In level flight, the lower skin is in tension while the 

upper skin is in compression. For this reason, this design is referred to as 

stressed skin construction. During turbulence, upper and lower skins can 

experience both tension and compression. This box structure is able to support 

the above-mentioned moments, making single wing aircraft possible. The 

elimination of the struts and wires so dramatically reduced air drag that aircraft 

were able to fly twice as fast as before with the same engine.  

While automobile structures are spot welded and ships are arc welded, 

bridges, buildings, and aircraft are riveted or bolted together. Rivets are the 

preferred fastening method in bridges and buildings mainly because such joints 

provide some structural damping via internal friction in the rivet-hole and plate-

plate interfaces. This damping reduces vibrations and oscillations. 

Spot welding is practical for automobile bodies. It is fast, repeatable, and 

strong. Laser welding is sometimes used on long edge-edge joints in auto 
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subassemblies because the weight of the overlapped regions of conventional 

joints is saved and such joints are easy for a laser to access via line-of-sight. Arc 

welding is rarely used in aluminum because the region around such joi nts 

reaches a high temperature and this destroys desirable material properties 

created by prior rolling and heat treatment. Spot welding is also rare in aluminum 

because the ever-present tough aluminum oxide on the surface prevents good 

electrical contact.  

As a result, rivets and bolts are used exclusively for aircraft structural joints. 

Rivet and bolt joints in aircraft are the critical element in aircraft integrity. Great 

care is expended on creating these joints because they are subject to high 

stresses. The holes are drilled with keen attention to making their axes normal to 

the skin surface and their diameters correct. In highly stressed regions of the 

wing, each hole is manually reamed out to pre-stress the region around the hole. 

Each rivet or bolt is compressed or torque precisely in order to achieve the 

stress-carrying capability intended by the structural engineers. Rivet diameter 

and compression are calculated to ensure that the installed rivet not only 

completely fills the hole but also creates compressive stress in the surrounding 

material. If there is any possibility that drilling a hole will leave a burr on the back 

side, this burr must be manually removed because it could puncture the 

corrosion-resisting paint when the skins are pulled together by the fastener. 

 

Figure 2-1 Schematic view of Aircraft with its Parts. 
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Structural engineers take care to choose the size of the fastener to 

support the stresses it is expected to bear. The same is true of skin thicknesses 

as mentioned above. On an aircraft wing, the skin may be as much as ten times 

thicker at the root than it is at the tip. The diameter of fasteners varies similarly, 

with diameters as large as your thumb at the root and as small as 3 or 4 mm at 

the tip. Such specialization raises the cost because it reduces economies of 

scale in purchasing and inventory control, but it saves considerable weight.  

The major aircraft structures are wings, fuselage, and empennage. The 

primary flight control surfaces, located on the wings and empennage, are 

ailerons, elevators, and rudder. These parts are connected by seams, called 

joints. 

All joints constructed using rivets, bolts, or special fasteners are lap joints. 

Fasteners cannot be used on joints in which the materials to be joined do not 

overlap - for example, butt, tee and edge joints. 

 

 

Figure 2-2 Cut-Out View of Boeing 777 Commercial Aircraft. 

2.2 Aircraft wings 

Aircraft wings have to be strong enough to withstand the positive forces of 

flight as well as the negative forces of landing. In this dissertation emphasis is 
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given to metal wings, as the formulation and results produced are confined to 

metal wings.  

Metal wings are of two types: Semi-cantilever and full-cantilever. Semi-

cantilever, or braced, wings are used on light aircraft. They are externally 

supported by struts or flying wires which connect the wing spar to the fuselage. A 

full cantilever wing is usually made of stronger metal. It requires no external 

bracing or support. The skin carries part of the wing stress. Parts common to 

both wing designs are spars, compression ribs, former ribs, stringers, stress 

plates, gussets, wing tips and wing skins. 

2.2.1 Components of the aircraft wing 

2.2.1.1 Wing spars  

Two or more spars are used in the construction of a wing. They carry the 

main bending and torsional load from wing root to tip. Both the spar and a 

compression rib connect the wing to the fuselage. 

2.2.1.2 Compression ribs  

Compression ribs carry the main load in the direction of flight, from leading 

edge to trailing edge. On some aircraft the compression rib is a structural piece 

of tubing separating two main spars. The main function of the compression rib is 

to absorb the force applied to the spar when the aircraft is in flight. 

2.2.1.3 Former ribs 

A former rib, which is made from light metal, attaches to the stringers and 

wing skins to give the wing its aerodynamic shape. Former ribs can be classified 

as nose ribs, trailing edge ribs, and mid ribs running fore and aft between the 

front and rear spar on the wing.  

2.2.1.4 Stringers  

Stringers are made of thin sheets of preformed extruded or hand-formed 

aluminum alloy. They run front to back along the fuselage and from wing butt to 

wing tip. Riveting the wing skin to both the stringer and the ribs gives the wing 

additional strength. 

2.2.1.5 Stress plates  

Stress plates are used on wings to support the weight of the fuel tank. 

Some stress plates are made of thick metal and some are of thin metal 
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corrugated for strength. Stress plates are usually held in place by long rows of 

machine screws, with self-locking nuts, that thread into specially mounted 

channels. The stress-plate channeling is riveted to the spars and compression 

ribs. 

2.2.1.6 Gussets  

Gussets, or gusset plates, are used on aircraft to join and reinforce 

intersecting structural members. Gussets are used to transfer stresses from one 

member to another at the point where the members join. 

2.2.1.7 Wing tips 

The wing tip, the outboard end of the wing, has two purposes: To 

aerodynamically smooth out the wing tip air flow and to give the wing a finished 

look. 

2.2.1.8 Wing skins 

Wing skins cover the internal parts and provide for a smooth air flow over 

the surface of the wing. On full cantilever wings, the skins carry stress. However, 

all wing skins are to be treated as primary structures whether they are on braced 

or full cantilever surfaces. Wing skin carry shear load coming onto the wing. 

2.3  Aircraft fuselage 

The largest of the aircraft structural components, there are two types of 

metal aircraft fuselages: Full monocoque and semimonocoque. The full 

monocoque fuselage has fewer internal parts and a more highly stressed skin 

than the semimonocoque fuselage, which uses internal bracing to obtain its 

strength. 

The full monocoque fuselage is generally used on smaller aircraft, because 

the stressed skin eliminates the need for stringers, former rings, and other types 

of internal bracing, thus lightening the aircraft structure. 

The semimonocoque fuselage drives its strength from the following internal 

parts: Bulkheads, longerons, keel beams, drag struts, body supports, former 

rings, and stringers. 
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2.3.1 Components of the aircraft fuselage 

2.3.1.1 Bulkheads 

A bulkhead is a structural partition, usually located in the fuselage, which 

normally runs perpendicular to the keel beam or longerons. A few examples of 

bulkhead locations are where the wing spars connect into the fuselage, where 

the cabin pressurization domes are secured to the fuselage structure, and at 

cockpit passenger or cargo entry doors. 

2.3.1.2 Longerons and Keel Beams 

Longerons and keel beams perform the same function in an aircraft 

fuselage. They both carry the bulk of the load traveling fore and aft. The keel 

beam and longerons, the strongest sections of the aircraft, tie its weight to other 

aircraft parts, such as power plants, fuel cells, and the landing gears. 

2.3.1.3 Drag Struts and Other Fittings 

Drag struts and body support fittings are other primary structural 

members. Drag struts are used on large jet aircraft to tie the wing to the fuselage 

center section. Body support fittings are used to support the structures which 

make up bulkhead or floor truss sections. 

Former rings and fuselage stringers are not primary structural members. 

Former rings are used to give shape to the fuselage. Fuselage stringers running 

fore and aft are used to tie in the bulkheads and former rings. 

2.4 Aircraft Empennage Section and primary flight control surfaces  

The empennage is the tail section of an aircraft. It consists of a horizontal 

stabilizer, elevator, vertical stabilizer and rudder. The conventional empennage 

section contains the same kind of parts used in the construction of a wing. The 

internal parts of the stabilizers and their flight controls are made with spars, ribs, 

stringers and skins. 

2.4.1 Aircraft empennage components and flight control surfaces 

2.4.1.1 Horizontal Stabilizer and Elevator 

The horizontal stabilizer is connected to a primary control surface, i.e., the 

elevator. The elevator causes the nose of the aircraft to pitch up or down. 

Together, the horizontal stabilizer and elevator provide stability about the 
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horizontal axis of the aircraft. On some aircraft the horizontal stabilizer is made 

movable by a screw jack assembly which allows the pilot to trim the aircraft 

during flight. 

2.4.1.2 Vertical Stabilizer and Rudder 

The vertical stabilizer is connected to the aft end of the fuselage and gives 

the aircraft stability about the vertical axis. Connected to the vertical stabilizer is 

the rudder, the purpose of which is to turn the aircraft about its vertical axis. 

2.4.1.3 Ailerons 

Elevators and rudders are primary flight controls in the tail section. 

Ailerons are primary flight controls connected to the wings. Located on the 

outboard portion of the wing, they allow the aircraft to turn about the longitudinal 

axis. 

When the right aileron is moved upward, the left one goes down, thus 

causing the aircraft to roll to the right. Because this action creates a tremendous 

force, the ailerons must be constructed in such a way as to withstand it.  

Flight controls other than the three primary ones are needed on high-

performance aircraft. On the wings of a wide-body jet, for example, there are as 

many as thirteen flight controls, including high and low-speed ailerons, flaps, and 

spoilers. 

2.4.1.4 Flaps and Spoilers 

Wing flaps increase the lift for take-off and landing. Inboard and outboard 

flaps on the trailing edge of the wing travel from full up which is neutral 

aerodynamic flow position to full down causing air to pile up and create lift. 

Leading edge flaps - Krueger flaps and variable-camber flaps - increase the wing 

chord size and thus allow the aircraft to take off or land on a shorter runway. 

Spoilers, located in the center section span-wise, serve two purposes. They 

assist the high-speed ailerons in turning the aircraft during flight, and they are 

used to kill the aerodynamic lift during landing by spreading open on touchdown.  

2.4.1.5 Trim Tabs 

Connected to the primary flight controls are devices called trim tabs. They 

are used to make fine adjustments to the flight path of an aircraft. Trim tabs are 

constructed like wings or ailerons, but are considerably smaller.  
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2.5 Load transfer 

The wing and fuselage are the two major components of an aircraft. The 

horizontal and vertical tails bear close resemblance to the wing. A wing and 

fuselage structure consists of a collection of basic structural elements. Each 

component, as a whole, acts like a beam and a torsion member.  

In reality, aircraft loads are in the form of air pressure on the skin, 

concentrated loads from the landing gear, power plants, passenger seats, etc. 

these loads are to be collected locally and transferred to the major load-carrying 

members. Without proper care, these loads may produce excessive local 

deflections that are not permissible from aerodynamic considerations. 

2.5.1 Wing structure 

The main function of the wing is to pick up the air and power point loads 

and transmit them to the fuselage. The wing cross-section takes the shape of an 

airfoil, which is designed based on aerodynamic considerations. The wing as a 

whole performs the combined function of a beam and a torsion member. It 

consists of axial members in stringers, bending members in spars and shear 

panels in the cover skin and webs of the spars. 

The spar is a heavy beam running span wise to take transverse shear 

loads and span wise bending. It is usually composed of a thin shear panel (the 

web) with a heavy cap or flange at the top and bottom to take bending. Wing ribs 

are planar structures capable of carrying in-plane loads. They are placed chord 

wise along the wing span. Besides serving as load distributers, ribs also hold the 

skin stringer to the designed contour shape. Ribs reduce the effective buckling 

length of the stringers and thus increase their compressive load capability. 

 

Figure 2-3 Wing Structure 
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2.5.2 Fuselage  

Unlike the wing, which is subjected to large distributed air loads, the 

fuselage is subjected to relatively small air loads. The primary loads on the 

fuselage include large concentrated forces from wing reactions, landing gear 

reactions and payloads. For airplanes with carrying passengers, the fuselage 

must also withstand internal pressures.  

The fuselage structure is a semimonocoque construction consisting of a 

thin shell stiffened by longitudinal axial elements (stringers and longerons) 

supported by many transverse frames (bulkheads) along its length. The fuselage 

skin carries the shear stresses produced by internal pressures. The stringers 

carry bending moments and axial forces; they also stabilize the thin fuselage 

skin.Fuselage frames are used to maintain the shape of the fuselage and to 

shorten the span of the stringers between supports in order to increase the 

buckling strength of the stringer. 

 

Figure 2-4 Fuselage structure 

2.6 Summary  

To perform dynamic analysis for aircraft wing, a reduced order model is 

modeled which is amenable for using spectral finite element method. The 

components of aircraft wing which are sufficient to capture the dynamic behavior 

are spars, ribs and skin. Using these parts a reduced order model of the aircraft 

wing modeled and the formulation of this model is done using spectral finite 

element method.  

 



14 

 

Chapter 3  

Wave Propagation and Spectral finite element method 

This chapter gives an introduction to wave propagation and spectral analysis. It 

also includes the formulation of 1D elements (rod and beam) using spectral finite 

element method. 

3.1  Wave Propagation  

Wave propagation [1] is a transient dynamic phenomenon resulting from 

short duration impact loads of high frequency content. Impact loads are very 

often encountered in aircraft structures in the form of gusts, bird hits, tool drops 

during refurbishment and other transient environments during flight. Structures 

are an important application Here, the wave propagation studies are used to 

understand the dynamic behavior of structure subjected to impact loads. Here, 

the presence of even minute defects and cracks, which occur at initiation of 

damage and may lead to structural failure, can be detected with help of 

diagnostic waves. In aircraft structures, the undesired vibration and noise 

transmit from the source to other parts in the form of wave propagation, and the 

reduction of this vibration is also another important application of wave 

propagation studies. 

The difference between structural dynamics and wave propagations in 

structures is the high frequency excitation in the latter problems. If the temporal 

variation of load is large (of the order of seconds), the frequency content of 

loading will be low and such problems come under the category of structural 

dynamics. Since the low frequency load excites only the first few modes, the 

response of the structure can very well be approximated by the first few normal 

modes. So the structure can be idealized with fewer degrees of freedom. 

However, when the duration of the load is of the order of micro to milliseconds, 

the wave starts propagating in the structure with a finite velocity. So the degrees 

of freedom required for such models will be many orders higher than structural 

dynamics problems and they are categorized as wave propagation problems.  

In wave propagation, the group velocity of propagation, wave numbers, 

level of attenuation of the response and the wavelengths are important in the 

analysis. Therefore, phase information of the waves, which is of no major 

concern in structural dynamic problems, become really important in wave 

propagation analysis. 
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In wave propagation problems, analysis method based on frequency 

domain is normally used. This is because of the complexities involved in solving 

the multi-model phenomena problem in the time domain. Here, all the governing 

equations, boundary conditions and variable are transformed to the frequency 

domain using Fast Fourier Transforms, which are the numerical implementation 

of discrete Fourier transforms. 

3.2  Spectral Analysis 

Spectral analysis is the synthesis of waveforms from the superposition of 

many frequency components, used to obtain the local behavior of different 

waveguides and their characteristics. The local behavior is synthesized to obtain 

the global wave behavior. The phase changes incurred during wave propagation 

can be expressed using spectral description of waves, by making use of the 

governing differential for the problem. 

In spectral analysis, wave numbers and group speeds are important to 

understand the wave mechanics in a waveguide. They enable us to know 

whether the wave mode is propagating or attenuating or a combination of these 

two. For a propagating wave, the wave numbers will let us understand whether it 

is dispersive or non-dispersive. If a wave profile changes its shape as it 

propagates, the wave is said to be dispersive, otherwise it is called non-

dispersive. 

3.2.1 Waveguide 

Any structural element which guides the wave in a definite pattern is a 

waveguide. Rods are axial or longitudinal waveguides, as they support only axial 

motion. Beams are called flexural waveguides, as they support only twisting 

motion. In 2D frames, axial and flexural motions both appear simultaneously and 

are not coupled with each other.  

In general, a waveguide supporting ‘n’ different motions will have ‘n’ highly 

coupled governing partial differential equations and hence ‘n’ different wave 

modes, each of which will have unique wave numbers. 

3.2.2 Wave number and Spectrum relation 

The wave number (k) is frequency dependent parameter which 

determines whether the wave propagates or not, or will propagate after certain 

frequency. If a wave changes its shape during propagation, it is dispersive wave 

and if the shape of the wave is retained it is non-dispersive. 
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If the wave number (k) is a linear function of the frequency of the 

frequency (ω), as k = C ω, (C is constant) then the waves will be non-dispersive 

in nature, e.g. rods. But if the wave number (k) is a non-linear function of the 

frequency (ω), as k = C ωn, then the waves will be dispersive in nature e.g. in 

beams and plates. The relation between wave number and frequency is called 

spectrum relation. 

In general, the wave number can be written in complex form as R Ik k k , 

at a given frequency. The real part of the wave number ( Rk ) represents the 

propagating wave, while the imaginary part ( Ik ) represents the spatially decaying 

damped wave mode. 

3.2.3 Phase speed, Group and Dispersion relations  

Phase speed ( PC ) represents the speed of the individual particles in a 

wave packet and does not associate with transfer of mass, energy or momentum. 

If the phase speed is constant and independent of frequency, the wave is non-

dispersive in nature. Phase speed is computed as  

p

R

C
k

          (3.1) 

Group speed ( gC ) represents the speed of propagation of a group of 

waves having same frequency and is associated with the transfer of energy and 

should be bounded. The time of arrival of all the waves depend on this 

frequency. If the group speed is constant and independent of frequency, the 

wave is again non-dispersive in nature. 

g

R

d
C

dk
          (3.2) 

The relation between phase/group speeds and frequency is called 

dispersion relation and the respective curves are generally called as dispersion 

curves. For a non-dispersive system, the phase speed and group speed will be 

same. 

3.2.4 Relation between phase speed and group speed 

 From Eqn. (3.1), we get 
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R

p

k
C

          (3.3) 

Substituting Eqn.(3.3) in Eqn.(3.2), gives the following form as  

1

2

11

2

p p

g p p

p p p

dC dCd
C d d d C C

C C C d
  (3.4) 

From Eqn.(3.4), it is obvious that, 

When,  

0,
p

g p

dC
C C

d   Also,   

 
, 0

p

g

dC
cut off C

d  

3.2.5 Cut-off frequency 

Cut-off frequency corresponds to the frequency, Here a purely imaginary 

wave number changes to a purely real or a complex value with a non-zero real 

part or vice-versa. Physically, it represents the frequency at which a completely 

damped non-propagating wave-mode transforms to propagating mode or vice-

versa. 

3.3 Spectral finite Element Method (SFEM) 

Spectral finite element method (SFEM) [2], is considered as the most suitable 

technique for studying wave propagation in structural waveguides subjected to 

high frequency content loading. For this type of loading, the wave propagation 

analysis by conventional finite element method (CFEM) is computationally 

expensive, since the element size should be of the order of wavelength. However 

in SFEM, the governing equation is transformed first to frequency domain using 

discrete Fourier transform (DFT). In doing so, the governing partial differential 

equation (PDE) is reduced to a set of ordinary differential equations (ODE) with 

constant coefficients, where the time coordinate is removed from the formulation 

and the frequency is introduced as a parameter. Hence the time doesn’t appear 

explicitly, but is replaced by phase relationships among the field variables which 

are complex in nature. The resulting ODEs can be solved exactly and the 

elements are formulated using the exact solution of the governing ODEs as 
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interpolating functions. The size of the global dynamic stiffness matrix is 

appreciably smaller than that involved in the CFEM. The steps to be followed in 

SFEM are as follows: 

a) The exact dynamic stiffness is generated and assembled for each 

sampled frequency and the force-displacement relationship is solved for 

unit impulse to determine the system transfer function (also called the 

frequency response function, FRF) 

b) The FRF is then convolved with the Fourier coefficient of the load. 

c) Next, Inverse fast Fourier transform (IFFT) is used to get the time history 

of the response. 

 

Figure 3-1 Outline of FFT Based Spectral Finite Element Method. 

3.4 Spectral Element for Rods 

In the aircraft structural assembly the rod like components are stringers in 

the wing assembly and longerons in the fuselage assembly. 

Because the dynamic behavior of a structure is of great importance in 

engineering, it is necessary to be able to accurately predict the dynamic 

characteristics of the structure. The finite element method (FEM) has been used 

extensively in structural dynamics. The finite element model may provide 

accurate dynamic characteristics of a structure if the wavelength is large 

compared to the mesh size. However, the finite element solutions become 

increasingly inaccurate as the frequency increases. Although the accuracy can 

be improved by refining the mesh, this is sometimes prohibitively expensive in 
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two- and three-dimensional problems. The conventional finite element (mass and 

stiffness) matrices are usually formulated from assumed frequency- independent 

polynomial shape functions. Because the vibrating shape of a structure varies 

with the frequency of vibration in reality, the FEM requires subdivision of the 

structure into finite elements (or a mesh) for accurate solutions. Alternatively, if 

the shape functions are frequency dependent, then the subdivision may not be 

necessary. This leads to the dynamic stiffness matrix method. 

The dynamic stiffness matrix is formulated from the frequency-dependent 

(or dynamic) shape functions that are exact solutions of the governing differential 

equations [15]. This frequency-dependent matrix has both mass and stiffness 

properties of the structural element embedded in it. Because the dynamic 

stiffness matrix is obtained by directly solving the governing differential 

equations, all assumptions, being within the limits of the classical theory of 

differential equations of motion only, are less severe than those made in the FEM 

and other approximate methods. Thus, the dynamic stiffness matrix method 

certainly provides more accurate predictions of structural dynamic 

characteristics. Because the dynamic stiffness matrix method does not require 

subdivision of a structural member into finite elements, it may eliminate 

discretization errors and is capable of predicting an infinite number of Eigen 

solutions by means of a minimum number of degrees of freedom (DOF). This 

improves the solution accuracy and lowers the computation cost significantly. 

Because the dynamic stiffness matrix is stiffness formulated, it can be assembled 

at a specified frequency in a completely analogous way to that used for the FEM. 

Thus, the assembly feature of the FEM can be equally applied to the dynamic 

stiffness matrix method. 

The dynamic stiffness relation is found via dynamic shape functions, these 

are essentially interpolation functions between the element ends, but instead of 

being simple polynomials, they are the exact displacement distributions.  

 

(a) Finite Element    (b)  Throw-off Element 

Figure 3-2 Nodal Loads and Degrees of Freedom for Longitudinal Spectral Elements. 
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3.4.1 Shape functions 

Let  be the general longitudinal displacement for a rod,  be the longitudinal 

displacement at nodal point 1,  be the longitudinal displacement at nodal point 

2 and  be the member forces for a rod. 

Let  be the wave number for the longitudinal spectral element,  be the 

young’s modulus of the rod,   be the cross sectional area of the rod and L be 

the length of the rod. 

The general longitudinal displacement for a rod is 

 1 1 ( )ik x ik L xu x Ae Be         (3.5) 

Here  

A, B are constants determined from the boundary conditions on the 

element.  

The displacement end conditions for a finite element, shown in figure 3.2(a), are 

   1 1
1 20 ,                ik L ik Lu u A Be u L u Ae B     (3.6) 

After solving for A, B in terms of the nodal displacements, the longitudinal 

displacement at an arbitrary point in a finite rod is  

        (3.7) 

Here  

  are the frequency-dependent rod shape functions, are 

given by 

  

  And 

  

The significance of the shape functions is that the complete description of 

the element is captured in the two nodal degrees of freedom . Since the 

spectral element can be very long, using the shape function and the nodal values 

response between nodes is computed.  
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The displacements and the member forces are 

        (3.8) 

       (3.9) 

The displacement end conditions for a throw-off element, shown in figure 3.2(b), 

are 

 

The displacement at an arbitrary point for a throw-off element is 

      (3.10) 

The shape function  is frequency dependent and is complex even in simple 

rod case with no damping. 

3.4.2 Dynamic stiffness for rods 

The member loads for finite element at each end of the rod are related to the 

displacements by 

      (3.11) 

      (3.12) 

Equation (3.11) and (3.12) are written as, 

     (3.13) 

Equation (3.13) in short notation is written as, 

          (3.14) 

Here  is the frequency dependent dynamic element stiffness matrix for the rod, 

it is symmetric as seen from the explicit matrix form 

      (3.15) 

The stiffness relation for throw-off element is  

           (3.16) 

Equation (3.15) gives the stiffness relation for finite element and equation (3.16) 

gives the stiffness relation for throw-off element 
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3.5 Spectral elements for beams 

In the aircraft structural assembly the components which can be 

approximated as beam elements are spars in the wing assembly. The wing 

assembly and fuselage assembly separately as a whole resemble their behavior 

with the beam; they can be approximated as beam elements. 

The approach followed here for beams is much the same as in the previous 

section for rods but since beams are two-mode systems, then there must be two 

degrees of freedom at each node making the stiffness matrix of order [4×4].  

 

(a) Finite element    (b) Throw-off element 

Figure 3-3 Nodal Loads and Degrees of Freedom for Flexural Spectral elements. 

3.5.1 Shape functions  

Let  be the general transverse displacement,  be the general transverse 

rotation degree of freedom for flexural spectral element. 

Let  be the two wave numbers for two-mode system of the flexural spectral 

element, L is the length of the flexural spectral element.  

The general displacement for a Timoshenko beam is   

  (3.17) 

 1 2 1 2( ) ( )ik x ik x ik L x ik L xx Ae Be Ce De      (3.18) 

Here 

A,B,C,D - Coefficients determined from the boundary conditions on the 

element. 

  - Amplitude ratios given by 

         (3.19) 
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For throw-off element with C=D=0, the end conditions require that  

     (3.20) 

The Coefficients A and B can be re-written in terms of the nodal displacement  

and rotation .  

The displacement can be written as  

         
1 11 11 2 1 2,        ( ) ( )x g x g x x g x g x    (3.21) 

Here  

  are the frequency dependent beam shape functions and are given 

by 

1 2

1 2

1 2

1 2

1 1 2

2 1 2 1 2

1

2 2 1

ˆ ( ) [ ] /

ˆ ( ) [ ] /

ˆ ( ) [ ] /

ˆ ( ) [ ] /

ik x ik x

ik x ik x

ik x ik x

ik x ik x

g x R e R e

g x R R e R R e

g x e e

g x R e R e

      (3.22) 

1 2R R  

The complete description of this element has now been captured in the two nodal 

degrees of freedom .  

For a finite element, the end conditions on the element are 

1 1 2 2
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ(0) ,      (0) ,     ( ) ,     ( )L L      (3.23) 

The displacement solution is  

1 2 1 2( ) ( )

1 2 3 4
( ), ( )

T ik x ik x ik L x ik L xx x Ae Be Ce De   (3.24) 

Here  

i
Are the respective amplitude ratios 

Equation (3.24) is written as  

( ), ( ) ( ) [ ][ ( )] [ ][ ( )]
T

A Bx x u x e x A e L x B    (3.25) 

Here the two vectors of amplitude are 
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1

2

0
,     ,      [ ( )]

0

ik x

ik x

A C e
A B e x

B D e
    (3.26) 

We have defined the amplitude ratio matrices as 

1 2 3 4

[ ] ,       [ ]A B
     (3.27) 

The matrix [ ] is modal matrix. It is fully populated matrix of order [2×2] and 

typically is not symmetric. The matrix [ ( )]e x is diagonal and is the unit matrix 

when the argument is zero. 

Nodal displacement at x=0 and x=L is written in terms of vectors {A} and {B} as, 

1

1

2

2

ˆ

ˆ [ ][ (0)] [ ][ ( )]

ˆ [ ][ ( )] [ ][ (0)]

ˆ

A B

A B

A

e e L B

e L e C

D

      (3.28) 

Solving this as a system of matrices to get 

1

1

2

2

ˆ

ˆ
ˆ ˆ ˆ[ ] [ ]

ˆ

ˆ

A

B
G G u

C

D

        (3.29) 

 The elements of [4×4] matrix ˆ[ ]G  are 

11 1 2 2 12 2 1 2 2

13 2 1 2 14 2 1 2 2

21 1 2 1 22 1 1 2 1

23 1 1 2 24 1 1 1 2

31 13 32 14 3

ˆ ˆ( ) / ,       ( ) /

ˆ ˆ( ) / ,       ( ) /

ˆ ˆ( ) / ,       ( ) /

ˆ ˆ( ) / ,       ( ) /

ˆ ˆ ˆ ˆ ˆ, ,    

G r r e G R r r e

G r re G R re r

G r r e G R r r e

G re r G R re r

G G G G G 3 11 34 12

41 23 42 24 43 21 44 22

ˆ ˆ ˆ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,    ,

G G G

G G G G G G G G

     (3.30) 

Here 

2 2

1 1 2 1 2 2 1 2 1 2 1 2( )(1 ),       ( )( ),       r R R e e r R R e e r r   (3.31)  
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and 

1 2

1 2,         ik L ik Le e e e . 

Substituting for the coefficients in the assumed displacement field of equation 

(3.17 and 3.18), the displacements and rotations can now be written in the 

compact form as 

1
ˆ ˆ ˆˆ ˆ ˆˆˆ ˆ( ) [ ] ,                ( ) [ ][ ]

T T

x N G u x N L G u     (3.32) 

Here ˆˆ [ ]
T

N G  and 1
ˆˆ ˆ[ ][ ]

T

N L G  give the shape functions for ˆ( )x and ˆ( )x , 

respectively. The {4×1} vector N̂ is a function of x given by 

1 2 1 2( ) ( )ˆ
T

ik L ik L ik L x ik L xN e e e e       (3.33) 

While the matrix 
1
ˆ[ ]L is diagonal and contain the amplitude ratios 

1 1 2 1 2
ˆ[ ] [ , , , ]L diag R R R R        (3.34) 

3.5.2 Dynamic stiffness for beams 

The stiffness relation for the beam element is established by taking 

appropriate space derivatives of the shape function.  

For the throw-off element, 

1 1 2 1 1 1 2 1
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ,             ( ) ( ) ( )x g x g x x g x g x   (3.35) 

The nodal loads are expressed in terms of the displacement degrees of freedom 

through the relationships for the structural resultants  

2
2

2

ˆ ˆ
ˆˆ ˆ( ) ,            ( )

d d
M x EI V x EI I

dx dx
     (3.36) 

Evaluation of these at x=0 leads to the dynamic stiffness as  

11 11 12

11 21 22

ˆ ˆˆˆ ˆ(0)

ˆˆ ˆ ˆˆ (0)

V k kV
EI

MM k k
      (3.37) 

Here the individual stiffness terms are 
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2 2

2 1 1 2 1 1 2 2
11 12 21 22

1 2 1 2 1 2

( ) ( )ˆ ˆ ˆ ˆ, ,
k k i k k i R k R k

k k k k
R R R R R R

    (3.38) 

This symmetric throw-off stiffness matrix is complex and therefore the structural 

stiffness matrix will also be complex after assembling. 

The finite element looks the same as the conventional element except that 

the mass is distributed instead of concentrated at the ends. It is assumed that 

there are no applied loads between the ends. 

Considering a beam waveguide of finite length L with loads applied only at the 

ends. The shape functions are  

1
ˆ ˆ ˆˆ ˆ ˆˆˆ ˆ( ) [ ] ,       ( ) [ ][ ]

T T

x N G u x N L G u      (3.40) 

Here  

û is the collection of four degrees of freedom, This leads to the moments 

and shear expressions. 

2

1

ˆˆ ˆ ˆ( ) ' [ ]

ˆ ˆˆ ˆ ˆ ˆˆ ˆ( ) '' [ ] [ ][ ]

T

T T

M x EI N G u

V x EI N G u I N L G u

    (3.41) 

Here primes indicate differentiation. At x=0 and x=L equation (3.41) gives, 

1

1

2

2

ˆ ˆ(0)

ˆˆ (0) ˆˆ[ ][ ]
ˆˆ( )

ˆˆ ( )

V

M
N G

V L

M L

      (3.42) 

Here the square matrix ˆ[ ]N contains the derivatives 

2

1

2

1

ˆ ˆ ˆ''(0) (0) [ ]

ˆ '(0)
ˆ[ ]

ˆ ˆ ˆ''( ) (0) [ ]

ˆ '( )

T T

T

T T

T

EI N I N L

EI N
N

EI N L I N L

EI N L

     (3.43) 
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The relation between the loads and degrees of freedom is  

ˆˆ ˆ[ ]F k u            (3.44) 

Here  

ˆ[ ]k - Dynamic stiffness matrix,  

F̂ - Nodal load Vector with components 1 1 2 2
ˆ ˆ ˆ ˆV M V M , and  

û - Nodal displacement vector with components 1 1 2 2
ˆ ˆˆ ˆ  

The individual stiffness terms of the matrix ˆ[ ]k are: 













2 2
11 2 1 1 22 2 21

2 2
13 1 2 1 21 2 22

12 2 1 11 2 12 1 1 11 2 12

14 1 1 12 2 11 2 1 12 2 11

22 1 2 2 1 1 22 2 21

24 1 2 2 1 1 21

( )( ) / ,

( )( ) / ,

[ ( ) ( ) / ,

[ ( ) ( ) / ,

( )( ) / ,

( )(

k k k r z r z

k k k r z r z

k ik r z r z ik r z r z

k ik r z r z ik r z r z

k ik R ik R r z r z

k ik R ik R r z

       
2 22

23 14 33 11 34 12 24 22

) / ,

,     ,     ,      .

r z

k k k k k k k k

     (3.45) 

Here  

1 2

1 2

1 2

1 2

1 1 2 11

2 1 2 12

2 2

1 2

11

12

22

12

( ) ,

( ) ,

( ) / ,

1 ,

,

1 ,

.

ik L ik L

ik L ik L

ik L ik L

ik L ik L

r R R z

r R R z

r r EI

z e e

z e e

z e e

z e e

        (3.46) 

And the remaining terms are obtained using symmetry. 
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3.6 Spectral element for 2D frames 

The 2D frames are the combination of 1-D beam elements connected 

together, when beams are part of connected structures they additionally support 

axial loads. As the transverse displacement and axial displacement are not 

coupled with each other, the stiffness matrix for a 2D frame is taken as addition 

of rod stiffness matrix and beam stiffness matri x. This gives the effect of 

connected structures using 1D beam elements.  

 

(a) Finite element    (b) Throw-off element 

Figure 3-4 Nodal loads and degrees of freedom for spectral element of 2D frame 

Therefore the stiffness matrix for elements of 2D frames is of dimension 

[6×6], here the active degrees of freedom are axial displacement, transverse 

displacement and rotation per node. 

3.7 Summary 

This chapter has briefly discussed about the construction of the dynamic 

stiffness matrix for 1D rod, 1D beams and 2D frames. 
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Chapter 4   

Reduced Order Modeling of Aircraft Wing  

This chapter covers the reduced order modeling of aircraft wi ng from a  

three-dimensional model to a two-dimensional beam-frame model which is 

amenable for frequency response analysis using spectral finite element method. 

4.1 Major Components of Aircraft Wing 

The major components of aircraft wing are spars, ribs and skin. To capture 

the response at the joint of these structures, we take into account of the rivet 

connections. Here the rivet modeling is not done; instead the effective stiffness of 

the rivet is added at the respective joint nodes. 

 

Figure 4-1 Schematic Top View of Aircraft. 

The above figure illustrates top sectional view of the aircraft with attention 

given to wing showing its major components spars, ribs and skin, right wing 

being un-skinned showing spars running along the span-wise direction, ribs 

placed along the chord-wise direction and its left wing being skinned. 
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4.2 Equivalent 2D Beam-Frame Model of an Aircraft Wing 

Task is to capture the dynamic characteristics of aircraft wing. It has been 

discussed that to model the three dimensional wing and perform analysis is too 

expensive. So, here an equivalent two-dimensional beam-frame model of the 

aircraft wing is modeled which will be amenable to solve for frequency response 

analysis using spectral finite element method. 

Instead of modeling whole aircraft wing a 2D model of the wing along its 

span wise direction have modeled, which is capable to capture transverse 

displacement accurately. The components which have to be taken into account 

while a reduced order model of the wing is being modeled are spars, ribs and 

skin. 

In the aircraft wing, the spars bear the bending and torsional loads over the 

wing. The ribs bear the in-plane transverse loads over the wing. The wing skins 

bear the shear load over the wing. 

Here is the schematic view of the aircraft wing in the reduced model as a 

two-dimensional beam-frame model which is joined to fuselage at one end and 

free at the other end. 

 

Figure 4-2 Schematic Front View of Reduced order model of Aircraft Wing. 

In the above figure the elements which are in the centre from wing root to 

tip are replaced by spars, the two series of elements above and below the spar 

elements are replaced by top and bottom skin respectively and the elements 

normal to spar elements are replaced by ribs (each rib is modeled as a 

combination of two elements). 
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The aircraft wing is taken as a stiffened structure, using three of its major 

components and rivets used to join them. To capture the dynamic characteristics 

accurately the rivet connections are taken into account, which are used to join 

ribs to the skin. These rivets are running from leading edge to trailing edge of the 

wing joining the top and bottom skin with the ribs. The each line of rivets from 

leading edge to trailing edge of the wing has taken as one rivet line connection, 

the above connection is valid for the three dimensional wing but when it comes to 

the reduced order model they have only two nodes. The rivet line connection is 

replaced with a single distributed spring between these nodes. 

The distributed spring is a combination of three springs one each in 

longitudinal, transverse and rotational directions.  

 

 

Figure 4-3 Distributed Spring Between node-1 and node-2. 

Here 

        xK  Stiffness of the spring along longitudinal direction, 

        yK  Stiffness of the spring along transverse direction, and 

        K  Stiffness of the spring along rotational direction. 

4.3 Segments of the 2D Beam-Frame Model 

To get the dynamic stiffness matrix for the whole 2D beam-frame model is 

difficult, so the whole model is consider has an assemblage of segments. The 

part of the model shown in figure 4-4 is a segment between two consecutive ribs. 
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Figure 4-4 2D Beam-Frame model of a Segment of the wing. 

Figure 4-5 shows the zoomed view of the segment of beam-frame model. 

Considering the beam-frame model of one segment formed with seven elements, 

fourteen distinct nodes and also four distributed springs at the respective joints.   

 

Figure 4-5 A Zoomed-in View of 2D Beam-Frame model of one segment of the wing. 
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Figure 4-6 One Segment of the 2D Beam-Frame model of the Aircraft Wing. 

Figure 4-6 shows the 2D beam-frame model of one segment which goes 

into the beam-frame model of the wing. 

4.4 Formulation of dynamic stiffness matrix of one segment of 2D 
beam-frame model 

The main objective is to get global dynamic stiffness matrix of one segment 

of 2D beam-frame model using spectral finite element method. Figure 4-5 shows 

that there are seven elements in the model, which has modeled with 1D beam 

elements, whose local stiffness matrix is similar to the elements of 2D frame with 

three active degrees of freedom at each node.  

The stiffness matrix for all the seven elements having three degrees of 

freedom at each node can be assembled together to get the global stiffness 

matrix. After assembling these elements there is no connectivity between some 

nodes. This model without the distributed spring does not satisfy compatibility 

condition; also the global stiffness matrix will be singular. 

The stiffness matrix due to the distributed spring is defined as follows.  

Let ra Area of the single rivet among the rivet line connection on the wing, 

      sd Shank diameter of the rivet, 
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      n
 
Numbers of rivets along the each rivet line connection, 

    rA  Effective area of the distributed spring in reduced order model, 

    rE Young’s modulus of the rivet material 

    rG Shear modulus of the rivet material and  

     rh Length of the rivet 

Then 

r rA n a           (4.1) 

2

4

s
r

d
a           (4.2) 

Effective stiffness of the distributed spring is defined as, 

0 0

ˆ 0 0

0 0

x

y

K

K K

K

         (4.3) 

Here 

        xK  Stiffness of the spring along longitudinal direction, 

        yK  Stiffness of the spring along transverse direction, and 

        K  Stiffness of the spring along rotational direction. 

Considering each spring as an element the stiffness along longitudinal, 

transverse and rotational direction are as follows   

r r r r
x

r r

G A G na
K

h h
         (4.4) 

r r r r
y

r r

E A E na
K

h h
         (4.5) 

2

1
y r

y r r r r

r

K hM
K K h E na h

h

       (4.6) 

The stiffness due to distributed spring is dependent on material properties 

of rivet, no. of rivets in the rivet-line connection, length of the rivet and shank 

diameter. 

From the figure 4-6, Effective stiffness of the distributed spring between node 1 

and 6 is given by, 
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(1)

* (1)

1

(1)

0 0

ˆ 0 0

0 0

x

y

K

K K

K

        (4.7) 

Similarly between node 3 and 4, 

(2)

* (2)

2

(2)

0 0

ˆ 0 0

0 0

x

y

K

K K

K

        (4.8) 

Similarly between node 5 and 10, 

(3)

* (3)

3

(3)

0 0

ˆ 0 0

0 0

x

y

K

K K

K

        (4.9) 

Similarly between node 7 and 8 

(4)

* (4)

4

(4)

0 0

ˆ 0 0

0 0

x

y

K

K K

K

        (4.10) 

Considering the distributed spring between node 1 and 6, from the 

equilibrium of nodal forces and moments at node 1 

0 0

1 1 6

1 1 6

1 1 6

ˆ ˆ ˆ( )

ˆ ˆ ˆ( )

ˆ ˆ ˆ( )

X X

Y Y

F N K u u

F V K v v

M M K

        (4.11) 

The above equations in matrix notation can be written as  

0 0
1 1 6

1 1 6

1 61

ˆ ˆ ˆ0 0

ˆ ˆ ˆ0 0

ˆ ˆ ˆ0 0

X

Y

N K u u

V K v v

KM

       (4.12) 

*

1 1 6
ˆ ˆ ˆ ˆ( )f K u u          (4.13) 

From the equilibrium of nodal forces and moments at node 6  
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*

6 6 1
ˆ ˆ ˆ ˆ( )f K u u          (4.14) 

Similarly, 

Considering the distributed spring between node 3 and 4 

From the equilibrium of nodal forces and moments at node 3  

*

3 3 4
ˆ ˆ ˆ ˆ( )f K u u          (4.15) 

From the equilibrium of nodal forces and moments at node 4 

*

4 4 3
ˆ ˆ ˆ ˆ( )f K u u          (4.16) 

Considering the distributed spring between node 5 and 10 

From the equilibrium of nodal forces and moments at node 5  

*

5 5 10
ˆ ˆ ˆ ˆ( )f K u u          (4.17) 

From the equilibrium of nodal forces and moments at node 10 

*

10 10 5
ˆ ˆ ˆ ˆ( )f K u u          (4.18)  

Considering the distributed spring between node 7 and 8 

From the equilibrium of nodal forces and moments at node 7 

*

7 7 8
ˆ ˆ ˆ ˆ( )f K u u          (4.19) 

From the equilibrium of nodal forces and moments at node 8 

*

8 8 7
ˆ ˆ ˆ ˆ( )f K u u          (4.20) 

 

Considering the dynamic stiffness matrix of element wise waveguide of 2D 

beam-frame model as follows, 

For element (1) 

(1) (1)

11 12 1 1

(1) (1)
221 22 11

ˆˆ ˆ ˆ

ˆ ˆ ˆˆ

K K u f

uK K f
        (4.21) 
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For element (2) 

(2) (2)

2 1211 12

(2) (2)
321 22 3

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

u fK K

uK K f
        (4.22) 

For element (3) 

(3) (3)

6 611 12

(3) (3)
721 22 7

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

u fK K

uK K f
        (4.23) 

For element (4) 

(4) (4)

2 211 12

(4) (4)
921 22 9

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

u fK K

uK K f
        (4.24) 

For element (5) 

(1) (1)

4 411 12

(1) (1)
521 22 5

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

u fK K

uK K f
        (4.25) 

For element (6) and  

(2) (2)

8 811 12

(2) (2)
921 22 13

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

u fK K

uK K f
        (4.26) 

For element (7) 

(3) (3)

9 1411 12

(3) (3)
1021 22 10

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

u fK K

uK K f
        (4.27) 

After assembling wave guide elements and including the effect of the 

distributed springs through the equilibrium equations the global dynamic stiffness 

matrix of one segment of the 2D beam-frame model is, 
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11 12 1
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0 0 0 0 0 0 0 0
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*
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           (4.28) 

Re-arranging the right hand side terms to left hand side, the global dynamic 

stiffness matrix becomes as,  

11 12 16

21 22 23 29

32 33 34

43 44 45

54 55 510

61 66 67

76 77 78

87 88 89

92 98 99 910

105 109 1010

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

K K K

K K K K

K K K

K K K

K K K

K K K

K K K

K K K

K K K K

K K K

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

u F

u F

u F

u F

u F

u F

u F

u F

u F

u F

 (4.29) 

ˆ ˆˆ[ ]k u F  

Here coefficients of the above global dynamic stiffness matrix are given by, 
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(1) *
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4.5 Global dynamic stiffness matrix of 2D beam-frame model 

The stiffness matrix of the beam-frame model is taken into two instants one 

is due to the beam elements and the other due to the distributed springs. So after 

adding these two matrices, the global stiffness matrix of the 2D beam-frame 

model of the wing is obtained. 

4.6 Summary 

Through this global stiffness matrix the frequency response analysis of the 

2D beam-frame model has been performed. The response history at all nodal 

points had obtained in the frequency domain due to the high frequency loading at 

tip node. 
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Chapter 5  

Results and Discussions 

This chapter comprises of two major parts first half includes response 

analysis for 1D rod, 1D beam and 2D frame using spectral finite element method. 

The second half includes two different cases of 2D beam-frame model of aircraft 

wing using the formulation from the previous chapter of this dissertation.  

5.1 Dynamic Response of an Isotropic Rod 

Consider a semi-infinite rod, fixed at one end and impacted at the other 

end. Model has two elements, first element is of finite length and second element 

is considered as extending to infinity (a throw-off element). A throw-off element is 

introduced in order to avoid reflections from the boundary.  

The 1D rod of aluminum has been taken with material properties as follows,  

Elastic modulus: 70 GPa  

Shear modulus: 26.9 GPa 

Cross-section: 10 × 10mm2  

Length of the rod: 1m 

The axial load is applied at node 3 and axial velocity history is measured at the 

same.   

 

Figure 5-1 Semi-Infinite Rod Modeled with two Elements. 

The following plots shows the axial velocity  history at node 3 due to 

high-frequency pulse in the axial direction at the same, the applied load history is 

shown in the inset image of each plot.  
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The spectrum relation of an isotropic rod for an undamped case is  

         (5.1) 

Here  is linear in frequency. 

For the dispersion relation, constant phase and group speeds of  

     (5.2) 

 

Figure 5-2 Axial Velocity history at Node-3, due to loading (inset of the plot) in the Axial direction. 

Using the material properties, 

From equation (5.2), 

Constant speed of the wave travelling through rod  = 5×103 m/s 

Time taken by the wave to reach the interface from the free end = 0.2×10-3 sec 

Time taken by the wave to reach back to the free end after reflecting from the 

interface = Time of flight = 2 × (0.2×10-3) = 0.4×10-3 sec  
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From the above plot, 

Time of launch of the pulse = 0.1475 ×10-3 sec 

Time of reflection of the pulse = 0.55×10-3 sec 

Time of flight of the pulse = 0.4025×10-3 sec 

The time of flight of the pulse in the response history is equal to that predicted 
using material properties. 

 

Figure 5-3 Axial Velocity history at Node-3, due to loading (inset of the plot) in the Axial direction. 

Using the material properties, 

From equation (5.2), 

Constant speed of the wave travelling through rod  = 5×103 m/s 

Time taken by the wave to reach the interface from the free end = 0.2×10-3 sec 

Time taken by the wave to reach back to the free end after reflecting from the 

interface = Time of flight = 2 × (0.2×10-3) = 0.4×10-3 sec  

From the above plot, 
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Time of launch of the pulse = 0.15 ×10-3 sec 

Time of reflection of the pulse = 0.5475×10-3 sec 

Time of flight of the pulse = 0.3975×10-3 sec 

The time of flight of the pulse in the response history is equal to that predicted 

using material properties. 

 

 

 

Figure 5-4 Axial Velocity history at Node-3, due to loading (inset of the plot) in the Axial direction. 

Using the material properties, 

From equation (5.2), 

Constant speed of the wave travelling through rod  = 5×103 m/s 

Time taken by the wave to reach the interface from the free end = 0.2×10-3 sec 

Time taken by the wave to reach back to the free end after reflecting from the 
interface = Time of flight = 2 × (0.2×10-3) = 0.4×10-3 sec  
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From the above plot, 

Time of launch of the pulse = 0.59×10-3 sec 

Time of reflection of the pulse = 0.99×10-3 sec 

Time of flight of the pulse = 0.4×10-3 sec 

The time of flight of the pulse in the response history is equal to that predicted 
using material properties. 

 

 

Figure 5-5 Axial Velocity history at Node-3, due to loading (inset of the plot) in the Axial direction. 

Using the material properties, 

From equation (5.2), 

Constant speed of the wave travelling through rod  = 5×103 m/s 

Time taken by the wave to reach the interface from the free end = 0.2×10-3 sec 

Time taken by the wave to reach back to the free end after reflecting from the 
interface = Time of flight = 2 × (0.2×10-3) = 0.4×10-3 sec  
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From the above plot, 

Time of launch of the pulse = 0.34×10-3 sec 

Time of reflection of the pulse = 0.74×10-3 sec 

Time of flight of the pulse = 0.4×10-3 sec 

The time of flight of the pulse in the response history is equal to that predicted 
using material properties. 

 

5.2 Dynamic Response of an Isotropic Beam 

Consider a semi-infinite Euler-Bernoulli beam, fixed at one end and 

impacted at the other end. Model has two elements, first element is of finite 

length and second element is a throw-off element. A throw-off element is 

introduced in order to avoid reflections from the boundary. 

The 1D beam of aluminum has been taken with material properties as follows, 

Elastic modulus: 70 GPa 

Shear modulus: 26.9 GPa  

Cross-section: 10 × 10mm2  

Length of the beam: 1m  

The transverse load is applied at the node 3 and transverse velocity history is 

measured at the same. 

 

Figure 5-6 Semi-Infinite Beam Modeled with Two Elements. 
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The following plots shows the transverse velocity  history at node 3 due 

to high-frequency pulse in the transverse direction at the same, the applied load 

history is shown in the inset image of each plot. 

The spectrum relation of an isotropic beam for an undamped case is 

         (5.3) 

The mode 2 behavior is entirely imaginary for the undamped case, hence there is 

no propagation behavior for this mode. Considering only the mode 1 wave 

motion gives the phase speed and group speed as 

    (5.4) 

 

 

 

Figure 5-7 Transverse velocity history at node 3 due to loading in the inset of the plot. 
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Using the material properties, 

From equation (5.4), 

Group speed of the wave travelling through beam = 3.011×103 m/s 

Time taken by the wave to reach the interface from the free end = 0.332×10-3 sec 

Time taken by the wave to reach back to the free end after reflecting from the 
interface = Time of flight = 2 × (0.332×10-3) = 0.664×10-3 sec  

From the above plot, 

Time of launch of the pulse = 0.595×10-3 sec 

Time of reflection of the pulse = 1.265×10-3 sec 

Time of flight of the pulse = 0.67×10-3 sec 

The time of flight of the pulse in the response history is equal to that predicted 

using material properties. 

 

Figure 5-8 Transverse velocity history at node 3 due to loading in the inset of the plot. 
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Using the material properties, 

From equation (5.4), 

Group speed of the wave travelling through beam = 3.011×103 m/s 

Time taken by the wave to reach the interface from the free end = 0.332×10-3 sec 

Time taken by the wave to reach back to the free end after reflecting from the 
interface = Time of flight = 2 × (0.332×10-3) = 0.664×10-3 sec  

From the above plot, 

Time of launch of the pulse = 0.345×10-3 sec 

Time of reflection of the pulse = 1.02×10-3 sec 

Time of flight of the pulse = 0.67×10-3 sec 

The time of flight of the pulse in the response history is equal to that predicted 

using material properties. 

 

5.3 Dynamic Response of an 2D Frame 

Consider a 2D frame which is taken as a combination of 1D beam 

elements, for finite structures such as frame shown in figure () the propagating 

pulse has many reflections 

 

Figure 5-9 2D Frame. 
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A characteristic of connected structure is that they introduce sharp 

spectral peaks in the responses.  

 

Figure 5-10 Gaussian Pulse Loading-1 and Gaussian Pulse Loading-2. 

The following plots show the transverse velocity v/s Frequency at the node 1 , 

node 2 respectively, due to high-frequency pulse in the transverse direction at 

the node 1, respective load case is mentioned. The load histories are plotted in 

figure 5.10.  

 

Figure 5-11 Transverse frequency response at node 1 due to Gaussian pulse_1. 
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Figure 5-12 Transverse frequency response at node 2 due to Gaussian pulse_1. 

 

Figure 5-13 Axial frequency response at node 1 due to Gaussian pulse_1. 
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Figure 5-14 Axial frequency response at node 2 due to Gaussian pulse_1. 

 

Figure 5-15 Transverse frequency response at node 1 due to Gaussian pulse_2. 
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Figure 5-16 Transverse frequency response at node 2 due to Gaussian pulse_2. 

 

Figure 5-17 Axial frequency response at node 1 due to Gaussian pulse_2. 



54 

 

Figure 5-18 Axial frequency response at node 2 due to Gaussian pulse_2. 

5.4 Frequency Response analysis of an 2D beam-frame model of 

aircraft wing 

The 2D Beam-Frame model is replaced with 3D model of the 

aircraft wing for performing frequency response analysis using 

spectral finite element method. There are two cases which are solved 

as benchmark problems each separately using the formulation done 

in the previous chapter of this dissertation. 

5.4.1 Case1: Straight wing  

Here a CATIA model is prepared with two spars, six ribs and skin covering 

from top and bottom, the wing span is 1m and constant chord length of 0.85m 

and constant thickness of the airfoil as 0.082m. 
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Figure 5-19  Isometric View of CATIA model of Straight Wing. 

This 3D model can be replaced with the following beam-frame model to 

perform frequency response analysis using spectral finite element method. 

 

Figure 5-20 Beam-Frame Model of Straight Wing. 

The following plots shows the axial velocity v/s Frequency, transverse 

velocity v/s Frequency at node 30, 20 due to high-frequency pulse in the 

transverse direction at node 30, the load time history, frequency spectrum is 

shown in the inset image of each plot.  
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Figure 5-21 Axial velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 

 

Figure 5-22 Transverse velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 
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Figure 5-23 Axial velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 

 

Figure 5-24 Transverse velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 
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Figure 5-25 Axial velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 

Transverse direction. 

 

 

Figure 5-26 Transverse velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 
Transverse direction. 
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Figure 5-27 Axial velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 

Transverse direction. 

 

Figure 5-28 Transverse velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 

Transverse direction. 

The following plots show a comparison of four cases Here first is healthy 

case, other three cases degradation of the stiffness matrix of the distributed 

spring is considered with steps of 0.96, 0.92 and 0.88 at spring no.10 

respectively. 
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Figure 5-29 Axial velocity v/s Frequency at node 30 due to the Gaussian pulse-1. 

 

Figure 5-30 Axial velocity v/s Frequency at node 30 due to the Gaussian pulse-2. 
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Figure 5-31 Transverse velocity v/s Frequency at node 30 due to the Gaussian pulse-1. 

 

Figure 5-32 Transverse velocity v/s Frequency at node 30 due to the Gaussian pulse-2. 

5.4.2 Case2: Tapered wing 

This case is similar to case 2 except that the wing is tapered. Here a 

CATIA model is prepared with two spars, six ribs  and skin covering from top and 

bottom, the wing span is taken as 1m and chord length varying from 0.85m at 

root and 0.45m at tip and constant thickness of the airfoil of the wing as 0.082m. 
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Figure 5-33 Isometric view of CATIA model of tapered wing. 

This 3D model can be replaced with the following beam-frame model to 

perform frequency response analysis using spectral finite element method.  

 

Figure 5-34 Beam-frame model of tapered wing. 

The following plots shows the axial velocity v/s Frequency, transverse 

velocity v/s Frequency at node 30, 20 due to high-frequency pulse in the 

transverse direction at node 30, the load time history, frequency spectrum is 

shown in the inset image of each plot.  
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Figure 5-35 Axial velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 

 

Figure 5-36 Transverse velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 
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Figure 5-37 Axial velocity v/s Frequency at node 30 due to the loading in (inset of the plot) in the 

Transverse direction. 

 

Figure 5-38 Transverse velocity v/s Frequency at node 30 due to the loading (inset of the plot) in the 

Transverse direction. 
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Figure 5-39 Axial velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 

Transverse direction. 

 

 

Figure 5-40 Transverse velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 
Transverse direction. 
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Figure 5-41 Axial velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 

Transverse direction. 

 

 

Figure 5-42 Transverse velocity v/s Frequency at node 20 due to the loading (inset of the plot) in the 
Transverse direction. 

The following plots show a comparison of four cases Here first is healthy 

case, other three cases degradation of the stiffness matrix of the distributed 
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spring is considered with steps of 0.94, 0.88 and 0.81 at spring no.10 

respectively 

 

Figure 5-43 Axial velocity v/s Frequency at node 30 due to the Gaussian pulse-1. 

 

Figure 5-44 Axial velocity v/s Frequency at node 30 due to the Gaussian pulse-2. 
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Figure 5-45 Transverse velocity v/s Frequency at node 30 due to the Gaussian pulse-1. 

 

Figure 5-46 Transverse velocity v/s Frequency at node 30 due to the Gaussian pulse-2. 

 



69 

 

Chapter 6   

Conclusion and Future Scope of Work 

 The frequency response analysis is performed for 2D Beam-Frame model 

of aircraft wing, for the low-high frequency loading the response is measured at 

all the other nodal points. The degradation in one of the distributed spring is 

introduced with three different steps and it is compared with the healthy case.   

 The spectral finite element modeling and computation reported here are 

aimed at the off-line computation, in which the reduced order dynamic stiffness 

matrix of the healthy structure is obtained and stored in the computer memory. 

 In the future scope of work, a near real time scenario with successive data 

acquisition from a sensor network and computation of DFI vector. In reality, the 

successive data acquisition from the sensor network and its synchronization with 

the computation time to obtain DFI is important, especially for damage growth 

monitoring. 

 The DFI approach we can pose it as a forward problem with a more or 

less global measurement and estimate the damage size. If this can be achieved 

in the future experimental demonstration, then it would be possible to reach the 

level-III SHM capability using the DFI approach. 
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