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numerical integration schemes for polygonal finite elements. International Journal

for Numerical Methods in Engineering 2010; (under review)

2. Satyendra Singh, S. Natarajan, D. Roy Mahapatra, Stéphane P.A. Bordas, Ex-
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Abstract

This thesis presents numerical integration schemes for Polygonal Finite Elements with

Schwarz-Christoffel mapping which are optimal with superconvergent properties. The

arbitrary polygons of a finite element mesh are first mapped to regular polygons us-

ing isoparametric mapping and then to the unit-disk using SchwarzChristoffel mapping.

Numerical integration is done over this unit-disk by determining optimized integration

points. Lowest order Gauss quadrature points on isoparametrically mapped domain are

considered as initial conditions for optimization. Hence this method achieves better ac-

curacy and faster convergence compared to other contemporary methods with fewer com-

putational resources. The method automatically reduces to standard Gauss quadrature

based integration when polygons are quadrilaterals as a special case. Numerical results

presented for a few benchmark problems show high accuracy of the proposed schemes. The

method is established considering structured as well as unstructured meshes consisting of

pentagons and hexagons which, is a significant step forward to meshing complicated ge-

ometry and interfaces, material microstructure etc. Application of numerical integration

using optimal integration points for linear elastic fracture mechanics problem in polygo-

nal extended finite elements framework is considered next . Optimal integration scheme

is used for numerical integration over polygonal finite elements. Stress intensity factors

are computed for pure mode 1 and mixed mode cases using structured quadrilateral and

structured hexagonal meshes. The results are compared to standard isoparametric ex-

tended finite element method with quadrilateral elements. The method is shown to have

good accuracy and convergence with respect to the existing methods
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Chapter 1

Introduction

1.1 Polygonal Finite Element Method

Partial differential equations are used to formulate problems involving functions of sev-

eral variables; such as fracture, propagation of sound or heat, electromagnetics, fluid

flow, and elasticity. The finite element method is a powerful numerical method to solve

partial differential equations. It is well established for triangular and quadrilateral ele-

ments. In case of conventional finite element method, a fine mesh is required to get an

accurate result while using just the triangular elements. On the other hand sometimes it

becomes very difficult to discretize complex shaped domain just by using quadrilateral

mesh. These difficulties are overcome by allowing the element to have any number of

edges and by performing suitably higher order interpolations. And since most of the engi-

neering material have a polycrystalline microstructure, polygonal elements provide great

opportunity to model the multi-scale physical nature of the above problem. Wachspress

[11] proposed the construction of basis function on convex polygons for any number of

edges. After that significant advances have been made towards construction of barycen-

tric coordinates over arbitrary polygons [12, 13]. A simplified expression for Wachspress

basis functions is presented by Meyer et al. [14]. Floater [15] derived barycentric coor-

dinates in which a vertex in a planar triangulation is expressed as a convex combination

of its neighboring vertices. In Refs. [13] and [16], natural neighbor interpolation is used

1



Chapter 1. Introduction 2

to construct C 0 shape functions on polygonal elements. The construction of polygonal

interpolants using the principle of maximum entropy is described in Ref. [17]. Despite

all the advantages, use of polygonal elements poses one difficulty similar to meshfree

methods [18] and XFEM. Since the approximation functions for polygons are usually

non-polynomial, numerical integration becomes a problem. Several schemes have been

proposed to integrate this kind of approximation over polygonal domains to obtain the

stiffness matrix. One such scheme is to map a polygon in physical space to a regular

polygon [13, 16]. This regular polygon is then divided into triangles. These triangles are

then mapped to reference triangle and numerical quadrature rules over triangle are used

for numerical integration [19]. Hence two levels of mapping are required in this scheme.

Natarajan et al. [20] proposed mapping of an arbitrary polygon to a unit-disk using

Schwarz-Christoffel conformal mapping and used a mid-point integration [21] rule to in-

tegrate stiffness terms over a polygonal element. This method eliminates the need for

two-level mapping involving isoparametric polygonal mapping and triangulation. How-

ever, the method still suffers from two existing disadvantages. First of all it is expensive

to compute the Schwarz-Christoffel map for each polygon. And secondly a large number

of integration points, around 20 or more, are required to get accurate results of numer-

ical integration while using the mid-point integration rule. According to the mid-point

integration rule, the integration points are placed at the centroid of each polar segments

of the polygon. However, a significant improvement on element performance was proved

in Ref. [20] and more needs to be done.

1.2 Extended Finite Element Method

Finite element method has been used in fracture mechanics applications. Chan et al. [1]

have shown the usefulness of finite element method in computation of crack tip stress

intensity factors. Li et al. [2] compared two different methods for the calculation of

energy release rates. However in all the conventional finite element methods, the mesh

should conform to crack geometry. This imposes a major constraint on meshing and
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remeshing in case of crack growth problems. Babuska et al. [43] proposed a new type of

finite element method called Partition of Unity Method (PUM). The method introduced

the ability to include in the finite element space knowledge about the partial differential

equation being solved by including the local enrichment functions in the finite element

approximation. Later on this concept of the PUM is utilized to represent the arbitrarily

oriented crack within the finite element mesh by means of enrichment functions [3, 4].

This method later came to be known as eXtended Finite Element Method (XFEM)

[5]. The XFEM has been implemented in the polygonal framework [44]. In Polygonal

XFEM, similar to XFEM on quadrilateral meshes, due to the presence the discontinuous

enrichment functions and high strain gradient regions near crack tips special care has

to be taken while numerically integrating the weak form of governing equation. The

standard Gauss quadrature cannot be applied in elements enriched by discontinuous

terms, because the Gauss quadrature implicitly assumes a polynomial approximation.

This problem is overcome by partitioning the elements into subcells aligned to the dis-

continuity surface, in which the integrands are continuous and differentiable. Natarajan

et al. [6] presented a method where strong and weak discontinuities could be integrated

without dividing the elements into large number of sub-cells. Smoothed Finite Element

Method (SFEM) combined with XFEM has also been used as one of the solutions to this

problem [7]. The SFEM relies on strain smoothing, which was proposed by Chen et al.

[8] for meshless methods. Natarajan et al. [9] proposed a new method by coupling the

SFEM with the XFEM, a new numerical method called the Smoothed eXtended Finite

Element Method (SmXFEM).

As mentioned previously Tabarraei et el. [44] applied the XFEM method in polygonal

framework. In order to obtain the numerical integration of the weak form for governing

differential equation they subdivided the enriched elements into triangles. Then they

used well known quadrature rules for triangle for numerical integration. Since no well

established method exists for integrating over polygonal elements they used the triangu-

lation scheme for unenriched elements too. This however requires huge computational

resources.
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1.3 Scope of this Thesis

In this thesis a new approach has been proposed. A two-level mapping is used as de-

scribed next. First the arbitrary polygons in physical space are mapped to a regular

reference polygon using isoparametric mapping. Wachspress shape functions are defined

over these regular polygons. These regular polygons are then mapped to a unit-disk

using Schwarz-Christoffel conformal mapping. Then optimized integration points ac-

cording to the procedure outlined in section 3.2 are obtained for numerical integration.

The Schwarz-Christoffel map is computed only once for the reference polygon irrespec-

tive of the arbitrary shape of the polygons in physical space, which is very similar to one

time computation of integrals in the isoparametric family of polynomial finite element

meshes. Only the Jacobian of the isoparametric mapping needs to be computed for all

polygonal elements.

The optimal integration scheme is then used for linear elastic fracture mechanics

problems in XFEM framework. The optimal numerical integration technique is used for

arbitrary polygonal domains to compute the stiffness matrix for unenriched polygonal

elements. The triangulation scheme is used in case of enriched elements. This results in

large saving of computational resources as only the enriched elements, which are small

fraction of overall mesh, needs to be triangulated.

The outline of this thesis is as follows. In chapter 2 formulation of polygonal finite

element method is presented. The basic equations of linear elasticity are revisited in

section 2.1. We will briefly recall the formulation and the construction of polygonal

finite elements in section 2.2 and discuss the construction of Wachspress shape functions

in section 2.3. We discuss the numerical integration of weak form of governing equation

in section 2.4 and give brief introduction to Schwarz-Christoffel mapping in section 2.5

and proposed integration scheme is discussed next. In chapter 3 we discuss the two-

level mapping and propose two different optimization schemes of numerical integration.

Few benchmark problems for comparison of results are considered next. SC mid-point

method using 6 integration points is used to compare the performance of the proposed two

optimal integration schemes. Results are compared for structured as well as unstructured
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meshes with quadrilaterals, pentagons and hexagons. It is to be noted that the polygonal

elements we are referring to in this thesis have no mid-side nodes. That is, there are 4,5

and 6 nodes in quadrilateral, pentagonal and hexagonal elements, respectively.

In Chapter 4 we give the formulation of XFEM for crack problems. Section 4.1 briefly

revisits basic equations of linear elasticity for crack problems. Section 4.2 discusses

the crack modeling using discontinuous enrichment. Issues related to integration of

discontinuous functions and implementation of optimal integration scheme for extended

finite element method is considered in section 4.3. Numerical examples are presented in

Section 4.4. This is followed by conclusions in chapter 5.



Chapter 2

Problem Formulation

2.1 Governing Equations and Weak Form

The governing equilibrium equations for a two-dimensional linear static elasticity prob-

lem defined in the domain Ω bounded by Γ and Γ =Γu ∪ Γt, Γu ∩ Γt = φ is given

by

∇T
s σ + b = 0 in Ω (2.1)

where 0 is a null vector, σ is the stress tensor and b is the vector of external forces. The

boundary conditions can be expressed as

u = u on Γu (2.2)

nT
σ = t on Γt (2.3)

where u = (ux, uy)
T is the prescribed displacement vector on the essential boundary

Γu;

t =(tx, ty)
T is the prescribed traction vector on the natural boundary Γt; n is the unit

outward normal vector. The discrete equations for this problem are generated using the

Galerkin weak form

6



Chapter 2. Problem Formulation 7

∫

Ω

(▽sδu)T
D(▽su)dΩ −

∫

Γ

(δuT )bdΩ −
∫

Γ

(δu)T tdΓ = 0 (2.4)

where u and δu are the test functions that belong to admissible functions from Sobolev

space and D is the constitutive matrix. The finite element method uses the following

trial functions uh(x) and the test functions δuh(x):

uh(x) =

NP
∑

i=1

Ni(X)ui, δuh(x) =

NP
∑

i=1

Ni(X)δui (2.5)

where NP is the total number of nodes in the mesh.

Ni =





Ni 0

0 Ni



 (2.6)

is the shape functions matrix with entries being a polynomial of degree p or a rational

polynomial associated with node i, ui = [ui, vi]
T are the degrees of freedom associated

with node i. By substituting the approximations uh and δuh into the weak form and

invoking the arbitrariness of virtual nodal displacements, Equation (2.4) yields the stan-

dard discretized algebraic system of equations:

Ku = f (2.7)

with the stiffness matrix given by

K =

∫

Ωh

BTDBdΩ (2.8)

and the load vector given by

f =

∫

Ωh

NTbdΩ +

∫

Γt

NTt̄dΓ (2.9)

where Ωh is the discretized domain, formed by the union of elements Ωe. The stiffness

matrix K is symmetric, positive definite and with a strain-displacement matrix defined
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as

Bi(x) = ▽sNi(x) =











∂Ni

∂x
0

0 ∂Ni

∂y

∂Ni

∂y
∂Ni

∂x











(2.10)

where i in equation (2.10) corresponds to node i of the element. The size of the B matrix

depends on the number of nodes in a polygonal element. In this thesis we consider the

nodes only at the vertices of the polygonal elements.

2.2 Approximations on Polygons

Consider a polygonal domain Ω ⊂ R
2 that is described by n nodes. Let the i th node

be denoted as pi and the coordinate of the node i is xi = (xi, yi). Any generic point

p with coordinate x = (x, y) ∈ Ω, has a set of associated shape functions φi(x). An

approximation scheme for a scalar valued function u : Ω → R can be written as

uh(x) =
n

∑

i=1

φi(x)ui (2.11)

where ui are the unknown nodal variables at n vertices (nodes) of the polygon. From

the viewpoint of a conforming Galerkin approximation, the following are some of the

desirable properties of shape functions and of the resulting approximation:

1. Form a partition of unity to assure constant consistency condition, and that φi(x)

is non-negative and bounded:

n
∑

i=1

φi(x) = 1, 0 ≤ φi(x) ≤ 1 (2.12)

2. Interpolate nodal data:

φi(xj) = δij (2.13)

where δij is the Kronecker-delta. It ensures that the interpolated field at a node is

identical to the nodal quantity: uh(xi) = ui .
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3. Linear precision or linear completeness:

n
∑

i=1

φi(x)xi = x (2.14)

From this property it can be concluded that the shape function can exactly repro-

duce a linear function.

4. On the boundary of the domain Ω, the interpolant must be precisely linear, i.e.

interior shape functions should not contribute if a point p lying on the convex hull

and in addition only the nodes adjacent to point p must have non-zero values so

that a linear interpolant is realized:

uh(t) = αu1 + (1 − α)u2, x = αx1 + (1 − α)x2, x ∈ ∂Ω, α ∈ [0, 1]. (2.15)

Equation (2.15) in conjunction with the Kronecker-delta property in equation (2.13)

ensures that essential boundary conditions can be imposed. The following methods can

be used to build shape functions on polygonal domain.

1. Shape functions using length and area measures [11, 13, 16, 22] (e.g. Wachspress

shape function, Metric coordinate, Rational Polynomial)

2. Natural neighbor shape functions [23, 24]

3. Maximum entropy approximant [17, 25, 26, 27, 28]

4. Barycentric coordinates on irregular n-gon [14, 29]

In this thesis Wachspress shape functions are used to construct interpolation function.

2.3 Wachspress Shape Functions

Using the principles of projective geometry, Wachspress constructed rational basis func-

tions on polygonal domain [11]. In general, for an n-sided convex polygon, a Wachspress
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shape function N
(n)
i (x, y) is a polynomial of the following form:

Nn
i (x, y) =

Pn−2(x, y)

Pn−3(x, y)
(2.16)

where P(m)(x, y) is an m-degree polynomial in (x, y). In Ref. [14], a simple expression

have been obtained for Wachspress’s basis functions which can be expressed as

φw
i (x) =

wi(x)
∑n

j=1wj(x)
(2.17a)

wi(x) =
A(pi−1, pi, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
=

cot γi + cot δi
||x − xi||2

(2.17b)

where the last expression is due to Meyer et al. [14]. In equation (2.17), A(a, b, c) is the

P

Pi−1

Pi

Pi+1

γ
i

δ i

Figure 2.1: Barycentric coordinates: Wachspress basis function.

signed area of triangle [a, b, c] and γi and δi are shown in figure 2.1. The signed area of

a triangle whose vertices Ai have coordinates (xi, yi), for 1 < i < 3, is given by [30]

A =
1

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

2
[x3 (y1 − y2) − y3 (x1 − x2) + x1y2 − y1x2] (2.18)

In this thesis Wachspress shape functions are constructed by substituting the signed

area of the triangle given by equation (2.18) in equation (2.17b). The Wachspress shape
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functions are the functions of minimal degree that satisfy boundedness, linearity and

linear dependence on convex polyshapes [31].

2.4 Numerical Integration of Weak Form

The element stiffness matrix in equation (2.8) must be evaluated over the element. In

the standard polynomial finite element method, an element does not have more than

four edges for 2D domains. Therefore, the Gauss quadrature rule for polynomials, which

is optimal, can effectively be used to integrate the weak forms. To integrate weak forms

over the n-gon, no general quadrature rules are available which are proved to be optimal

for the integrals present in the stiffness matrices . The following methods can be used

for the integration of the weak form over the n-gon element.

1. Sukumar and Tabarraei [13] have proposed a method to integrate the weak form

over a n-gon element. In this method a physical element is mapped to a canoni-

cal domain and then that canonical element is subdivided into triangles and well

known rules are applied on each triangle for numerical integration. This method

involves a two-level isoparametric mapping: Physical element (Ωe) → Reference

polygon (Ωo) → Triangle. The standard triangular quadrature rule is used for in-

tegration over the triangle. Moreover, in isoparametric mapping, length measures

are preserved, but not the included angles, and so the positivity of the Jacobian

needs to be ensured. To ensure the positivity of the Jacobian the element should

be a convex element.

2. Another method to integrate over the n-gon element is the Smoothed Finite El-

ement Method (SFEM) [32] which is based on strain smoothening introduced by

Chen et al. [33] for mesh-free methods. The extension of strain smoothening to fi-

nite element method leads to integration on boundary of the finite elements, which

avoids the requirement of isoparametric mapping. Even in case of the SFEM,

the n-gon element is subdivided into triangles, solely for the purpose of numerical

integration. Unlike in the triangulation scheme, in SFEM the integration points
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lie on the boundary of the triangles. It was shown in Ref. [34] that Wachspress

interpolant can be used to construct SFEM approximations in physical space.

3. The other method to integrate over the n-gon element is the method developed

by Natarajan et al. [20]. In this method an n-gon element is mapped to a unit-

disk using Schwarz-Christoffel conformal mapping and various cubature rules are

applied for integration.

4. Recently Mousavi et al. [35] proposed a numerical algorithm based on group theory

and numerical optimization to compute efficient quadrature rules for integration

of bivariate polynomials over arbitrary polygons. They have shown that for the

integration involving rational polynomial shape functions over a regular hexagon

their quadrature rule requires as high as 85 integration points for a relative error

of 10−8.

In this thesis new method is proposed by considering the optimality of the integra-

tion points with respect to the resulting integral in the stiffness matrix. This method

is described in section 2.6. In this proposed method Schwarz-Christoffel mapping is

done using SCPACK [36] subroutines in FORTRAN and MATLAB SC Toolbox [37] in

MATLAB.

2.5 Schwarz-Christoffel Conformal Mapping (SCCM)

Let P be the interior of a polygon Γ having vertices w1, ..., wn and interior angles

α1π, ..., αnπ in the counter-clockwise order. Let f be any conformal map from the unit-

disk to P. Then, the Schwarz-Christoffel formula for a disk is given by [38]

f(z) = A+ C

∫ z n
∏

k=1

(

1 − ζ

zk

)αk−1

dζ (2.19)
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for some complex constants A and C, where wk = f(z) for k = 1, ...., n. The SCCM

integral in equation (2.19), in general, have no exact solution and has to be solved numer-

ically. All the necessary numerical steps are implemented using SCPACK FORTRAN

library [36] and SCT Toolbox in MATLAB [37]. The Jacobian of the SCCM mapping is

easily computed since the map is in an integral form and is given by

df

dz
=

n
∏

k=1

(

1 − ζ

zk

)αk−1

(2.20)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

2

3
4

x

y

(a)

−1 0 1

−1

−0.5

0

0.5

1

1 2

34

(1)

(2)

(3)

(4)

ξ̄

η̄

r

θ

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
1

2

3

4

(1)

(2)

(3)

(4)

ξ

η

R φ

(c)

Figure 2.2: Two level mapping and placement of integration points for quadrilateral.
Integration points are numbered and shown within parentheses. (a) Physical element.
(b) Reference polygon. (c) Element mapped to unit-circle. Points connected by dotted
lines in (b) are the original gauss points in standard isoparametric mapping.
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Figure 2.3: Two level mapping and placement of integration points for pentagon. Inte-
gration points are numbered and shown within parentheses. (a) Physical element. (b)
Reference polygon. (c) Element mapped to unit-circle.
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Figure 2.4: Two level mapping and placement of integration points for hexagon. Inte-
gration points are numbered and shown within parentheses. (a) Physical element. (b)
Reference polygon. (c) element mapped to unit-circle.

2.6 Numerical Integration

In this section we describe the proposed method of numerical integration. In this scheme

an arbitrary polygon in the physical domain is first mapped to a non-dimensional ref-

erence polygon using isoparametric mapping. The non-dimensional reference polygon is

a regular polygon with length of its edges 2 as depicted in figures 2.2b, 2.3b and 2.4b.

Details regarding mapping from physical domain to non-dimensional domain (reference

polygon) can be found in ref. [13]. The reference polygon is then mapped to a unit-disk

using Schwarz-Christoffel (SC) conformal mapping. Further details regarding mapping

from the polygon to the unit-disk can be found in ref. [20]. Figures 2.2, 2.3 and 2.4 show

the two-level mapping for quadrilateral, pentagon and hexagon respectively. Integration

points are defined over unit-disk. For the present case of two-level mapping the following

approximation can be used to integrate f(x, y) on an element in physical space:

∫

Ω

f(x, y)dxdy =

∫

Ωp

f(ξ̄, η̄)Jipdξ̄dη̄

=

∫

Ωc

f(ξ, η)JipJscdξdη

≃
nθ
∑

i=1

nr
∑

j=1

Aijf(rj cos θi, rj sin θi)

(2.21)
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where θ and r are the coordinates of integration points. Aij’s are the weights associated

with each integration point. Weight associated is the area of segment corresponding to

that integration point. Jip and Jsc are the Jacobians associated with isoparametric and

SC mapping respectively. The schemes employed to find the optimum integration points

for n-gons are discussed in the later sections of this thesis.

x

y

L

D τ
P

(a)

P
x

y

L

D

(b)

Figure 2.5: Finite element model with boundary conditions. (a) Pure shear. (b) Pure
tension.

2.7 Validation Methodology

A two-dimensional cantilever beam subjected to shear and tensile loads at the free end

is examined (Figure 2.5). The following geometry and material properties are used:

length L = 10, height D = 2, thickness t = 1, Young’s modulus E = 70GPa, Poisson’s

ratio = 0.3. A force of 100N is applied for shear and tensile loading cases.
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The exact solution [39] for displacements and stresses for shear loading is given by

u(x, y) =
Py

6EI

[

(6L− 3x)x+ (2 + ν)

(

y2 − D2

4

)]

(2.22a)

v(x, y) = − Py

6EI

[

3νy2(L− x) + (4 + 5ν)
D2x

4
+ (3L− x)x2

]

(2.22b)

where I is the second moment of inertia. Young’s modulus and Poisson’s ratio are,

respectively

E =







E (plane stress)

E
1−ν2 (plane strain)

v =







ν (plane stress)

ν
1−ν

(plane strain)
(2.23)

Augarde et al. [40] discussed on the boundary conditions required for this exact

solution given by equation (2.22). This solution holds only if the shearing forces on the

ends are distributed according to the same parabolic law as the shear stress τxy and the

intensity of the normal forces at the built-in end is proportional to y. Therefore the

shear force at the end is applied according to the same parabolic law given by τxy as

τxy(x, y) = − P

2I

(

D2

4
− y2

)

, σxx(x, y) =
P (L− x)y

I
, σyy(x, y) = 0 (2.24)

The exact solution for displacements under tensile loading is given by

u(x) =
σ

E
x (2.25a)

v(x, y) = −ν σ
E
xy (2.25b)

The above exact solutions for displacements are used to compute the error norms, as

defined in section 3.1, for shear and tensile loading cases.



Chapter 3

Optimal Numerical Integration

This chapter discusses the proposed two schemes to determine the optimal location of

integration points in polygon. One is based on the Frobenius norm and the other is

based on the displacement error in infinity norm.

3.1 Global Error Measures

For the purpose of error estimation and convergence studies L2 norm in interpolation

field and energy norm are used. The L2 norm of displacement error is given by

‖u − uh‖L2(Ω) =

√

∫

Ω

[(u − uh) · (u − uh)] dΩ (3.1)

where uh is the numerical solution and u is the analytical solution, or a reference solution.

The energy norm is given by

‖u − uh‖E(Ω) =

√

∫

Ω

[

(ε − εh)
TD(ε − εh)

]

dΩ (3.2)

The above norms plotted against the number of nodes to study the convergence as the

mesh is refined.

17
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3.2 Determination of Optimal Integration Points

In this section we discuss the methodology employed to obtain the optimal integration

points for the quadrilateral, pentagonal and hexagonal elements. As explained earlier,

the polygon in physical domain is mapped to non-dimensional coordinates first. For

this the integration in equation (2.8) needs to be performed over the reference element

domain. This is done by numerically mapping the reference element on to unit-disk by

Schwarz-Christoffel conformal mapping and integrating it over this unit-disk. It is impos-

sible to invert the map analytically. Any semi-analytical method of optimizing the Gauss

points, as done in case of Gaussian quadrature for isoparametric mapping in quadrilateral

element is not feasible in the present case. Therefore an attempt is made to determine

the optimal integration points entirely numerically. In conventional isoparametric for-

mulation, Gaussian quadrature gives the exact result for 4-node quadrilateral elements

using 2×2 integration rule. Therefore we start only with four integration points in the

present method for 4-node quadrilateral element and perform further optimization since

we have SC mapping instead of isoparametric mapping on unit-disk. We also show that

the present method, with just four integration points gives results comparable to that of

isoparametric finite element. This was not possible earlier when a single step mapping

using polygon → disk alone with Mid-Point integration scheme was used [20]. This is due

to the fact that the Wachspress shape functions are defined over an arbitrary physical

polygon, the resulting integrand will have different form for different arbitrary polygonal

elements. Later we extend this optimization method to pentagons and hexagons using

5 and 6 integration points, respectively. Figures 2.2c, 2.3c and 2.4c show the location of

integration points for quadrilateral, pentagonal and hexagonal elements symmetrically

located over the unit-disk.

3.2.1 Optimal integration for polygonal elements: scheme 1

In scheme 1 first the stiffness matrix of the reference element using a known and accurate

method, although computationally expensive, is calculated. This solution is referred to
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as the reference solution. Now the integration points on unit-disk are placed as shown

in figures 2.2c, 2.3c and 2.4c. Initial location of integration points is not important since

the location of the integration points is optimized. Let (R, φ) be the polar coordinate of

an integration point. The stiffness matrix is calculated by the method outlined in section

2.6. The stiffness matrix thus obtained is compared with the stiffness matrix obtained

from the reference solution and the error in the stiffness matrix in terms of Frobenius

norm of error matrix is calculated. The Frobenius norm of a matrix K is given by

‖K‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|kij|2 (3.3)

The error in the stiffness matrix is defined as

Ek =
‖K −Kh‖F

‖K‖F

× 100 % (3.4)

where K and Kh are the stiffness matrices obtained from reference solution and the

proposed solution method with optimised integration points, respectively. Now the values

of R and φ are varied and error as defined in equation (3.4) is plotted over the entire

domain. The value of R and φ corresponding to minimum error in Ek gives the optimal

integration points. Scheme 1 is applied to quadrilateral (n=4), pentagon (n=5) and

hexagon (n=6) and discussed in details in the later sections of this thesis.

3.2.2 Optimal integration for polygonal elements: scheme 2

Scheme 2 is based on minimizing the error in infinity norm of the the displacement. A

single element patch test is used to obtain results independent of the mesh. The relative

error in infinity norm of displacement is given by

E∞ =
‖u − uh‖∞

‖u‖
∞

(3.5)
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Now from equation (2.7)

u = K−1f (3.6a)

uh = Kh
−1f (3.6b)

By subtracting equation (3.6b) from equation (3.6a) we get

u − uh =
(

K−1 − Kh
−1

)

f

Now for the force of unit magnitude (f = 1) applied at all nodes (see fig. 3.2, 3.8 and

3.14), one has

u − uh =
(

K−1 − Kh
−1

)

1 =
∑

j

(

Kij
−1 − Khij

−1
)

(3.7)

where 1 is a vector whose all elements are unity. By taking maximum of absolute values

over rows on both sides, we get

max
1≤i≤n

|u − uh| = max
1≤i≤n

∣

∣

∣

∣

∣

∑

j

(

Kij
−1 − Khij

−1
)

∣

∣

∣

∣

∣

(3.8)

The left hand side in equation (3.8) is the infinity norm of vector u − uh and the right

hand side is the infinity norm of matrix K−1 − Kh
−1. That is

‖u − uh‖∞ =
∥

∥K−1 − Kh
−1

∥

∥

∞
(3.9)

The relative error in infinity norm is expressed as

‖u − uh‖∞
‖u‖

∞

=

∥

∥K−1 − Kh
−1

∥

∥

∞

‖K−1‖
∞

=

∥

∥Kh
−1 − K−1

∥

∥

∞

‖K−1‖
∞

(3.10)

The right most expression in equation (3.10) gives the relative error in infinity norm of

displacement in terms of stiffness matrices. This error in infinity norm of displacement

vs. R and φ is plotted and the values of R and φ corresponding to minimum error give

the optimal integration points. Scheme 2 is applied to quadrilateral (n=4), pentagon
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(n=5) and hexagon (n=6) as discussed in the later sections of this thesis.

Now we further investigate the upper bound of error in infinity norm of displacement

as given by equation (3.10). We frequently use norms to quantify the effect of perturba-

tions. As an illustration of this, let us quantify the change in K−1 as a function of change

in K. Let us use error in stiffness matrix E = Kh − K as a perturbation in stiffness

matrix K. Now if K is non-singular and r ≡ ‖K−1E‖
∞
< 1, then K + E is nonsingular

and from the theorem given in Ref. [41]

∥

∥(K + E)−1 − K−1
∥

∥

∞
≤ ‖E‖

∞
‖K−1‖2

∞

1 − r
(3.11)

on rearranging the terms we get

∥

∥(K + E)−1 − K−1
∥

∥

∞

‖K−1‖
∞

≤ ‖E‖
∞
‖K−1‖

∞

1 − r
(3.12)

The left hand sides in equation (3.12) is the error in infinity norm of the displacement

as given by equation (3.10) which involves computation of several matrix inversions.

Its upper bound (for E < 100%) can be computed more accurately since it involves

computation of K−1 only once. The above gives good reliability in computing infinity

norm error.

3.3 Analysis and Comparison of Results: Quadrilat-

erals (n=4)

The reference element is shown in Figure 2.2b. Now let us write the Wachspress interpo-

lation functions for a polygon (n=4) when it degenerates to the reference quadrilateral.

By using equations (2.17) and (2.18) and substituting coordinates of the vertices the

shape functions at any generic point p(ξ̄, η̄) within the element are obtained for refer-

ence quadrilateral. The main steps are given below. Quantities Wi in equation (2.17a)
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become

W1 =
2

(1 + ξ̄)(1 + η̄)
, W2 =

2

(1 − ξ̄)(1 + η̄)
(3.13a)

W3 =
2

(1 − ξ̄)(1 − η̄)
, W4 =

2

(1 + ξ̄)(1 − η̄)
(3.13b)

4
∑

i=1

Wi = W1 +W2 +W3 +W4 =
8

(1 − ξ̄2)(1 − η̄2)
(3.14)

Now based on equation (2.17a), the shape functions are given by

Ni =
Wi

4
∑

i=1

Wi

(3.15)

Substituting Wi from eqs. (3.13) and (3.14), we get

N1 =
(1 − ξ̄)(1 − η̄)

4
, N2 =

(1 + ξ̄)(1 − η̄)

4
(3.16a)

N3 =
(1 + ξ̄)(1 + η̄)

4
, N4 =

(1 − ξ̄)(1 + η̄)

4
(3.16b)

It is observed that the shape functions obtained in equation (3.16) are indeed the bilinear

shape functions in of the 4-node isoparametric quadrilateral. Therefore we start with

the same 2×2 Gauss integration points, which are optimal in isoparametric formulation.

We then show that since we have SC mapping, these points are not the optimal points

in the present case and later on we obtain the optimal integration points for the same

by the two different schemes explained in sec. 3.2.1 and sec. 3.2.2.

3.3.1 Scheme 1 applied to quadrilaterals (n=4)

The integration points for quadrilaterals for 2×2 Gauss integration rules are shown in

figure 2.2b and denoted by ”×” markers. As discussed previously, we compute the error

in Frobenius norm of stiffness matrix. An error of 28 % is found with the present 2×2

integration points. Hence these points are not optimal in the present case of SC mapping.
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We now represent integration points in polar coordinates r and θ. Then we vary the angle

θ in small steps keeping the radius r constant at value equal to the radial distance of

integration points in 2×2 Gauss rule. The coordinates of the integration points in the

Cartesian coordinate system are calculated as

ξ̄i = r cos
(

θ +
π

2
(i− 1)

)

; η̄i = r sin
(

θ +
π

2
(i− 1)

)

(3.17)

for the ith integration point, where 1 ≤ i ≤ 4. The stiffness matrix from an isoparametric
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Figure 3.1: Error in Frobenius norm vs. coordinates (R, φ) of integration points on unit
circle for 4-node quadrilateral element.

formulation is used as reference solution. It is apparent that for every point p(ξ̄, η̄) in

the quadrilateral there is a corresponding point p(ξ, η) in the unit-disk. These points on

the unit-disk are represented by R and φ in polar coordinates. The error in Frobenius

norm vs. R and φ is plotted in Figure 3.1. The values of R and φ and hence r and θ

corresponding to minimum error are given in table 3.1. These optimal integration points

are shown in figure 2.2b and denoted by ”⋄” markers. A careful observation shows that

the radial location of these integration points is the same as in 2×2 Gauss integration

rules but they are now rotated by an angle of 18.086559o. In fact rotation of 2×2 Gauss

points by an angle of −18.086559o also gives the same result.
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Table 3.1: Optimal coordinate of integration points for 4-node quadrilateral element.

In quadrilateral
domain (fig.
2.2b)

In unit-disk do-
main (fig. 2.2c)

Min. error in
Frobenius norm

8 × 10−4% 8 × 10−4%

Radiusopt 0.816496 0.749209
Angleopt 63.086559o 16.306493o

F

F

F

FF

x

y

Figure 3.2: FE model with boundary conditions for scheme 2 based
optimization for quadrilateral element.
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Figure 3.3: Error in infinity norm of u vs. coordinates (R, φ) of integration points on
unit circle for 4-node quadrilateral element.
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Figure 3.4: (a) Structured mesh and (b) unstructured mesh with quadrilateral elements.

3.3.2 Scheme 2 applied to quadrilaterals (n=4)

Figure 3.2 shows the finite element model with essential and natural boundary conditions

used for optimization using scheme 2 for 4-node quadrilateral element. The error in

infinity norm of the displacement as given by equation (3.10) vs. R and φ is plotted in

figure 3.3. The integration points thus obtained by scheme 2 for quadrilateral are found

to be the same as those obtained by scheme 1 (table 3.1).

Figure 3.4 shows a typical structured mesh and an unstructured mesh with 4-node

quadrilateral elements. Results obtained based on the above optimal integration points

are shown in figures 3.5 and 3.6. Convergence in strain energy against the number of

nodes for structured and unstructured mesh under pure tensile loading case is shown in

figures 3.5a and 3.5c, respectively. The error in strain energy for SC mid-point method

is 7 % with about 200 nodes whereas in case of the present method the error in strain

energy is less than 0.001 % with only 9 nodes for structured quadrilateral mesh. Similar

results are observed for unstructured quadrilateral mesh too. Convergence in strain

energy against the number of nodes for structured and unstructured mesh under pure

shear loading case is shown in figures 3.5b and 3.5d, respectively. Convergence rate in

energy norm (H1) is shown in figure 3.5 (in inset) for various cases. Please refer to

table 3.2 for comparison of convergence rate for different schemes. Negative values of
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Table 3.2: Comparison of convergence rate (least square fit) in energy norm for structured
(S) and unstructured (US) 4-node quadrilateral mesh.

Method Convergence rate in
energy norm for shear
loading (S/US)

Convergence rate in
energy norm for ten-
sile loading (S/US)

Monotonic
convergence
(S/US)

SC mid-point 1.2/0.6 1.5/1.2 No/No
Scheme 1 & 2 3.1/2.7 0/0 Yes/Yes

convergence rate indicate a diverging solution.

Convergence in relative error in L2 norm of displacement is plotted in figure 3.6. In

this case too the present method is much superior to SC mid-point method. For the

tensile loading case the error in L2 norm for the present method with only 9 nodes is of

the order of 10−7 and 10−2 for structured and unstructured meshes, respectively (figures

3.6a and 3.6c). Whereas the order of error in L2 norm for the SC mid-point method even

with 200 nodes is 10−1 for both structured and unstructured mesh. For the case of shear

loading the error in L2 norm is two order lower in case of the present method than the

error in case of the SC mid-point method with 200 nodes (see figures 3.6b and 3.6d).

3.4 Analysis and Comparison of Results: Pentagons

(n=5)

For pentagons there is no established optimal integration rule or isoparametric mapping

known till date. Therefore we define the integration points in the unit-disk directly.

Moreover the initial location of integration points is not important as we will be opti-

mizing for the integration points. Since only 4 integration points were needed in the

case of 4-node quadrilateral elements, intuitively we choose just 5 integration points for

a 5-node pentagon. The scheme of placement of integration points on the unit-disk is

shown in figure 2.3c. The coordinates of the integration points in Cartesian coordinate

coordinate system are calculated from R and φ as

ξi = R cos

(

φ+
2π

5
(i− 1)

)

; ηi = R sin

(

φ+
2π

5
(i− 1)

)

(3.18)
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Figure 3.5: Error in energy norm vs. number of nodes (4-node quadrilateral mesh).
Convergence rate in energy norm (H1) (in inset) (a) Structured mesh (Tension). (b)
Structured mesh (Shear). (c) Unstructured mesh (Tension). (d) Unstructured mesh
(Shear).
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Figure 3.6: Error in L2 norm vs. number of nodes (4-node quadrilateral
mesh). (a) Structured mesh (Tension). (b) Structured mesh (Shear).
(c) Unstructured mesh (Tension). (d) Unstructured mesh (Shear).
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for the ith integration point, where 1 ≤ i ≤ 5.

3.4.1 Scheme 1 applied to pentagons (n=5)

The triangulation method or the method proposed in Ref. [35] could be used to obtain

the reference solution for a pentagonal element. We use the triangulation method, as

discussed in section 2.4, with a large number of integration points to construct a reference

solution. We use the integration rule given by Dunavant [42] with 79 integration points

per triangle, where five symmetrically placed triangles represent the pentagon. This rule

can be used to integrate polynomials of degree 20 exactly.
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Figure 3.7: Error in Frobenius norm of u vs. coordinates (R, φ) of integration points on
unit circle for 5-node pentagonal element.

The error in Frobenius norm vs. R and φ is plotted in Figure 3.7. The values of R

and φ corresponding to minimum error are given in table 3.3. We notice that the error in

Frobenius norm in the stiffness matrix obtained using only 5 optimal integration points

with SC mapping is very small when compared with the reference solution which uses

395 integration points in the pentagonal element.
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Table 3.3: Optimal coordinate of integration points for 5-node pentagonal element

Scheme 1 Scheme 2
Min. error 0.1506 % in EK 5 × 10−9 in E∞

Ropt 0.761 0.761
φopt 57.817o 57.817o

3.4.2 Scheme 2 applied to pentagons (n=5)

Figure 3.8 shows the finite element model with essential and natural boundary conditions

used for optimization using scheme 2 for a pentagonal element. We use the same method

to obtain the reference solution as used in scheme 1. The error in the infinity norm of

the displacement as given by equation (3.10) vs. R and φ is plotted in figure 3.9. The

values of R and φ corresponding to the minimum error are the coordinate of the optimal

integration points. The optimal integration points obtained are given in table 3.3 and

interestingly they are the same as those obtained by scheme 1 (down to three decimal

places). Since it is not possible to obtain a structured pentagonal mesh in a rectangular

F
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y

F

F

F

F

F

F

Figure 3.8: FE model with boundary conditions for scheme 2 based
optimization for pentagonal element.

geometry, therefore only an unstructured mesh (Figure 3.10) is used for comparison of

results. Results obtained from the above optimal integration points are plotted in figures

3.11 and 3.12. Convergence in strain energy versus number of nodes for pure tensile

loading is shown in figure 3.11a. There is an error of 16 % in strain energy when SC
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Figure 3.9: Error in infinity norm of u vs. coordinates (R, φ) of integration points on
unit circle for 5-node pentagonal element.
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Figure 3.10: An unstructured mesh with pentagonal elements.
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Table 3.4: Comparison of convergence rate (least square fit) in
energy norm for 5-node pentagonal mesh.

Method Convergence rate in
energy norm for shear
loading

Convergence rate in
energy norm for ten-
sile loading

Monotonic con-
vergence

SC mid-point 0 0.24 No
Scheme 1 & 2 2.3 -0.5 Yes

mid-point method is used with 119 nodes, whereas in case of the present method the

error in strain energy is less than 0.001 % with only 22 nodes. Figure 3.11b shows the

convergence in strain energy versus number of nodes for pure shear loading. The present

method with 5 optimal integration points needs around 400 nodes to achieve an error

less than 1 % whereas the error in case of the SC mid-point method with same number

of nodes is 16 %. Convergence rate in energy norm (H1) is shown in figure 3.11 (in

inset) for various cases. The solution seems to be slightly diverging in case of the present

method for tensile loading case. However the error in energy norm is less than 0.045%

even for the largest value of error. Table 3.4 shows a comparison of convergence rate for

different schemes.
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Figure 3.11: Error in energy norm vs. number of nodes (5-node pen-
tagonal mesh). Convergence rate in energy norm (H1) (in inset) (a)
Unstructured mesh (Tension). (b) Unstructured mesh (Shear).

Convergence in relative error in L2 norm of displacement is plotted in figure 3.12. In
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Figure 3.12: Error in L2 norm vs. number of nodes (5-node pentagonal mesh). (a)
Unstructured mesh (Tension). (b) Unstructured mesh (Shear).

this case too the present method is much superior to SC mid-point method. In tensile

loading case (figure 3.12a), results show that there is an error of 0.15 % in L2 norm in

case of the present method with around 100 nodes. Whereas the SC mid-point method

has an error of 1.3 % with the same number of nodes. For the case of shear loading

(figure 3.12b) the the error in L2 norm with the present method is 0.39 % with around

400 nodes whereas the SC mid-point method gives an error of 15 % with same number

of nodes.

3.5 Analysis and Comparison of Results: Hexagons

(n=6)

As pointed out in case of pentagons, there is no established optimal integration rule for

n > 4. Therefore we define the integration points in the unit-disk as done in case of

pentagons. Similarly, here also initial location of integration point is unimportant since

we will be optimizing their coordinates. Intuitively we choose 6 integration points for

a 6-node hexagon (n=6). The scheme for placement of integration points is shown in

figure 2.4c. The coordinates of the integration points in Cartesian coordinate system are
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calculated as

ξi = R cos

(

φ+
2π

6
(i− 1)

)

; ηi = R sin

(

φ+
2π

6
(i− 1)

)

(3.19)

for the ith integration point, where 1 ≤ i ≤ 6.

3.5.1 Scheme 1 applied to hexagons (n=6)

The triangulation method or the method proposed in Ref. [35] could be used to obtain

the reference solution for a hexagonal element. We use the triangulation method, as

discussed in section 2.4, with a large number of integration points to construct a reference

solution. Here we use integration rule given by Dunavant [42] with 79 integration points

per triangle as done in the case of pentagons.
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Figure 3.13: Error in Frobenius norm of u vs. coordinates (R, φ) of integration points
on unit circle for 6-node hexagonal element.

The error in the Frobenius norm vs. R and φ is plotted in Figure 3.13. The values of

R and φ corresponding to the minimum error are given in table 3.5. We notice that the

error in the Frobenius norm of stiffness matrix obtained using just 6 optimal integration

points with SC mapping is very small when compared with the reference solution which
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Table 3.5: Optimal coordinate of integration points for 6-node hexagonal element.

Scheme 1 (fig. 2.4b) Scheme 2
Min. error 7.6089 % in EK 2 × 10−7 in E∞

Ropt 0.788 0.797
φopt 46.719o 46.811o

uses 474 integration points element.

3.5.2 Scheme 2 applied to hexagons (n=6)

Figure 3.14 shows the finite element model with essential and natural boundary condi-

tions used for optimization using scheme 2 for a hexagonal element. We use the same

method for getting reference solution as used in scheme 1. The error in the infinity norm

of displacement as given by equation (3.10) vs. R and φ is plotted in figure 3.15. The

values of R and φ corresponding to minimum error are given in table 3.5.
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Figure 3.14: FE model with boundary conditions for scheme 2 based
optimization for hexagonal element.

Figure 3.16 shows a structured mesh and an unstructured mesh with 6-node hexagonal

elements. Results obtained using the optimal integration points are shown in figures 3.17

and 3.18. Convergence in strain energy versus the number of nodes for structured and

unstructured mesh under pure tension are shown in figures 3.17a and 3.17c, respectively.

It is clear from the figures that strain energy varies by less than 0.25 % between mesh 1
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Figure 3.15: Error in infinity norm of u vs. coordinates (R, φ) of integration points on
unit circle for 6-node hexagonal element.
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Figure 3.16: (a) Structured mesh and (b) unstructured mesh with hexagonal elements.
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Table 3.6: Comparison of convergence rate (least square fit) in energy norm for structured
(S) and unstructured (US) 6-node hexagonal mesh.

Method Convergence rate in
energy norm for shear
loading (S/US)

Convergence rate in
energy norm for ten-
sile loading (S/US)

Monotonic
convergence
(S/US)

SC mid-point -0.4/-0.8 0.5/0.6 No/No
Scheme 1 3.6/3.1 -1/-1 Yes/Yes
Scheme 2 2.8/2.7 -1/-1 Yes/Yes

and mesh 2 for the present method with 6 optimal integration points. On the other hand

the SC mid-point method with the same number of integration points does not converge

to the exact value even for 450 nodes for which the error is still 9.8 %. Figure 3.17b

shows the convegence curves under shear loading case for hexagonal structured mesh.

Although the convergence rate with the present method is slower but finally it converges

at 300 nodes with an error of less than 1 %. Whereas in the case of SC mid-point method

with 6 integration points there is a saturation (locking) in strain energy with about 50

nodes for an error of 14 % but it never converges. Similar observations are made for the

structured hexagonal mesh too (3.17d). Convergence rate in energy norm (H1) is shown

in figure 3.17 (in inset) for various cases. The solution seems to be slightly diverging in

case of the present method for tensile loading case. However the error in energy norm is

≤ 1.2% even for the largest value of error. Table 3.6 shows a comparison of convergence

rate for different schemes.

Convergence in relative error in L2 norm of displacement is plotted in figure 3.18.

Here also the convergence curves show similar trends as observed in case of convergence

in strain energy. It is also seen that the two schemes give almost similar results due to

the fact that the difference in the coordinates of integration points is small.
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Figure 3.17: Error in energy norm vs. number of nodes (6-node hexagonal mesh). Con-
vergence rate in energy norm (H1) (in inset). (a) Structured mesh (Tension). (b) Struc-
tured mesh (Shear). (c) Unstructured mesh (Tension). (d) Unstructured mesh (Shear).
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Figure 3.18: Error in L2 norm vs. number of nodes (6-node hexagonal
mesh). (a) Structured mesh (Tension). (b) Structured mesh (Shear).
(c) Unstructured mesh (Tension). (d) Unstructured mesh (Shear).



Chapter 4

Extended Finite Element Method:

Formulation

4.1 Governing Equations and Weak Form

The governing equilibrium equations for a 2D static elasticity problem defined in the

domain Ω bounded by Γ and Γ = Γu ∪ Γt ∪ Γc (fig. 4.1), can be expressed as

∇T
s σ + b = 0 in Ω (4.1)

where 0 is a null vector, σ is the stress tensor and b is the vector of external forces.

❘
x x x

x

ΓΓ

Ω

f

Γu

f
t

b

Γc

u=u
_

Figure 4.1: A body in a state of elastostatic equilibrium.

40
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The following are the prescribed boundary conditions

u = u in Γu (4.2a)

nT
σ = t on Γt (4.2b)

nT
σ = 0 on Γc (4.2c)

where u = (ux, uy)
T is the prescribed displacement vector on the essential boundary

Γu; t =(tx, ty)
T is the prescribed traction vector on the natural boundary Γt and Γc is the

traction free boundary condition at crack all faces; n is the unit outward normal vector.

The discrete version of the weak form for this problem are obtained using Galerkin

approach as

∫

Ω

(▽sδu)T
D(▽su)dΩ −

∫

Γ

(δuT )bdΩ −
∫

Γ

(δu)T tdΓ = 0 (4.3)

where u and δu are the test functions that belong to admissible functions from Sobolev

space and D is the constitutive matrix. The extended finite element method uses the

following trial function uh(x) and the test function δuh(x):

uh(x) =

NP
∑

i=1

Ni(X)ui +
m

∑

j=1

Nk(X)ψ(X)ak (4.4a)

δuh(x) =

NP
∑

i=1

Ni(X)δui +
m

∑

j=1

Nk(X)ψ(X)δak +
m

∑

j=1

Nk(X)δψ(X)ak (4.4b)

where NP is the total number of nodes in the mesh, m is the number of enriched nodes,

ak is the set of degrees of freedom added to the standard finite element modal degrees

of freedom and ψ(X) is the discontinuous enrichment function. By substituting the

approximations uh and δuh into the weak form and invoking the arbitrariness of virtual

nodal displacements, equation (4.3) yields the standard discretized algebraic system of

equations:

Ku = f (4.5)
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with the stiffness matrix given by

Ke
ij =











Kuu
ij Kua

ij Kuc
ij

Kau
ij Kaa

ij Kac
ij

Kcu
ij Kca

ij Kcc
ij











(4.6)

and the load vector by

fi =
[

fu
i fa

i fc1
i fc2

i fc3
i fc4

i

]T

(4.7)

u is a vector of nodal parameters and given by

uh =
[

u a c1 c2 c3 c4
]T

(4.8)

4.2 Crack Modeling Using Discontinuous Enrichment

The main idea in Partition of Unity Methods is to extend the approximation basis by a set

of enrichment functions that are chosen based on the local behavior of the problem. For

the case of linear elastic fracture mechanics, two sets of functions are used: a Heaviside

jump function to capture the jump across the crack faces and asymptotic branch functions

that span the 2D asymptotic crack tip fields. The enriched approximation for fracture

mechanics problems takes the form [4]:

uh (x) =
∑

i∈I

Ni (x)ui +
∑

j∈J

Nj (x)H (x) aj+
∑

j∈K

Nj (x)
4

∑

α=1

ψα (x)bkα (4.9)

Ni(x) is the polygonal basis function of node i. Where aj and bkα are enrichment nodal

degrees of freedom corresponding to the Heaviside function H and the near-tip functions

ψα, respectively. Signed distance function for Heaviside function H is given by

H(ξ) =







1 ∀ξ > 0

−1 ∀ξ < 0
(4.10)
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where ξ is the signed distance from a point x to an interface Γ. The near tip enrichment

functions ψα are defined in terms of local coordinates (r, θ) and given as

ψα(r, θ) =
{ √

r sin θ
2
,

√
r cos θ

2
,

√
r sin θ sin θ

2
,

√
r sin θ cos θ

2

}

(4.11)

Approximation (4.9) is not an interpolation as nodal parameter ui is not the real dis-

placement value at node i. To overcome this shortcoming a shifting procedure is imple-

mented. That is the Heaviside function and near-tip functions are shifted around the

node of interest [46].

4.3 Numerical Integration

Numerical integration of the weak form of the governing equation presents a major

challenge in XFEM. This is due to the presence of the Heaviside enrichment function

which is discontinuous across the crack. In the following section we try to study the effect

of crack location on the error in integral value. We consider a single one-dimensional

element with crack arbitrary located between the two end nodes (figure 4.2a). The

integrands present in the stiffness matrices are bilinear, quadratic and cubic polynomials

or the rational polynomials for 4-node quadrilateral element. Therefor, we consider three

different cases with following types of integrals for one-dimensional study.

1. Function in the integrand is linear that is I =
1
∫

−1

xH(x)dx

2. Function in the integrand is quadratic that is I =
1
∫

−1

x2H(x)dx

3. Function in the integrand is cubic that is I =
1
∫

−1

x3H(x)dx

Where H(x) is the discontinuous Heaviside function which, for our one-dimensional case,

is defined as

H(x) =







1 ∀x > 0

−1 ∀x < 0
(4.12)
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Figure 4.2: (a) Variation of xH(x) along the element for a crack arbitrary located at xc

(marked with ”×”). (b) Error in integral vs. crack position for integral I =
1
∫

−1

xH(x)dx.

Nodes are marked with circles and Gauss points are marked with ”⋄” markers.

The exact value of the integral (Ie) is obtained by integrating the function analytically

as follows.

Ie =

1
∫

−1

f(x)H(x)dx = −
xc

∫

−1

f(x)dx+

1
∫

xc

f(x)dx (4.13)

For numerical evaluation of integrals we use the Gauss quadrature rule. The Gauss

quadrature rules with n points are exact for integrating polynomials of degree up to 2n−1.

Therefore we use 2-point Gaussian quadrature rule to evaluate integral numerically. The

2-point Gauss rule can integrate polynomials of degree up to 3 exactly. According to

Gauss quadrature rules numerically evaluated integral is given as

Ia =

1
∫

−1

f(x)H(x)dx =
2

∑

i=1

f(xi)H(xi)wi (4.14)

where xi and wi are the integration points and associated weights, respectively. Error in

integration is defined as

ǫ = Ie − Ia (4.15)
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Figure 4.2a shows the variation of discontinuous function xH(x) (case ”1”) along the
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Figure 4.3: (a) Variation of x2H(x) along the element for a crack arbitrary located at xc

(marked with ”×”). (b) Error in integral vs. crack position for integral I =
1
∫

−1

x2H(x)dx.

Nodes are marked with circles and Gauss points are marked with ”⋄” markers.

element for a crack arbitrary located at xc. Figure 4.2b shows the value of integrals

and error in integral value versus crack position for case ”1”. An error of -0.1547 is

observed when the crack is located at origin. Error is maximum at Gauss points with a

value of 0.6636. As the crack is moved from Gauss points towards nodes the error keeps

on decreasing and finally becomes zero at nodes. Figure 4.3a shows the variation of

discontinuous function xH(x) (case ”2”) along the element for a crack arbitrary located

at xc. The value of integrals for this case versus crack location is shown in figure 4.3b.

The error in integral value is zero when the crack is located at the center. The error

continues to increase as the crack is moved towards either of the Gauss points and

reaches to 0.123. The error jumps to -0.536 just after the Gauss points then continues

to decrease as the crack is moved towards nodes and become zero at nodes. Figure 4.4a

shows the variation of discontinuous function x3H(x) (case ”3”) along the element for

a crack arbitrary located at xc. Figure 4.3b shows the value of integral as function of

crack position for this case. The error at origin is 0.115 and continues to decrease towards

either of the Gauss points and reaches to 0.062 as the crack approaches the Gauss points.
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Figure 4.4: (a) Variation of x3H(x) along the element for a crack arbitrary located at xc

(marked with ”×”). (b) Error in integral vs. crack position for integral I =
1
∫

−1

x3H(x)dx.

Nodes are marked with circles and Gauss points are marked with ”⋄” markers.

The error jumps to 0.443 just after the Gauss points and continues to decrease towards

nodes and becomes zero at nodes.

From the above discussion we can conclude that the error is less when the crack is

located either near to the origin or near to either of the nodes. In all other cases error is

very high. As we have seen that even for one dimensional case the Gaussian quadrature

gives inaccurate results (except only for few special cases) for integrals involving discon-

tinuous functions, we divide the element into sub-elements. And hence the integrands

become continuous on each sub-elements. For elements intersected by crack, we modify

the element quadrature routines to accurately assemble the contribution to the weak

form on both sides of the discontinuity. The discrete weak form is usually constructed

with a loop over all elements, as the domain is approximated by

Ω =
∑

e

Ωe

where Ωe is the element subdomain. For elements cut by a crack, we define the element

sub-domain to be a sum of a set of sub-polygons (Ωs) whose boundaries align with the
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crack geometry

Ωe =
∑

s

Ωs

We divide the elements into triangles. The subpolygons are only necessary for integration

purposes as no additional degrees of freedom are associated with their construction. In

the integration of the weak form, an additional loop over sub-polygons is incorporated

for the elements that are divided into sub-polygons.

Although in case of elements with tip enrichments there is no discontinuous field, we

still subdivide the elements into sub-elements. This is done in order to capture the effect

of high stress gradients in the vicinity of the crack. We generally refer to intersected

elements as well as blending elements as enriched elements. We use the following two

different numerical integration scheme based on the element type.
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Figure 4.5: Triangulation of enriched elements in (a) quadrilateral and (b) hexagonal
structured mesh.

1. Integration on unenriched elements is performed by two-level mapping scheme with

optimal integration points for integration as described in chapter 3. An arbitrary

polygon is first mapped to a reference polygon using isoparametric mapping. The

reference polygon is then mapped to unit circle. The integration is done over this

unit disc. We use 4, 5 and 6 optimal integration points for 4-node quadrilateral
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element, 5-node pentagonal element and 6-node hexagonal element, respectively.

The two-level mapping for hexagonal element is shown in figure 2.4.

2. The integration scheme for enriched elements are similar to the scheme given in

Ref. [44] except that we define the Wachspress shape function over this arbitrary

physical element for enriched elements as opposed to on reference polygons in Ref.

[44]. Hence the need for mapping the integration points from reference polygon to

physical polygon is eliminated as done in Ref. [44]. The actual physical polygonal

element is then triangulated. Delaunay triangulation algorithm as implemented in

software package TRIPACK [47] is used to triangulate the enriched elements. In

each subtriangle a 25-point Gauss quadrature rule is used [42]. Triangulation for

enriched elements in quadrilateral and hexagonal mesh is shown in figure 4.5a and

figure 4.5b, respectively.

4.4 Numerical Results and Discussions

In this thesis the present method has been applied to edge crack in a plate under uniaxial

loading (mode 1) and oblique crack under uniaxial loading (mixed mode) problem. The

finite element model with boundary conditions is shown in figure 4.6. Convergence of

stress intensity factor with number of nodes has been established. For these problems

a quadrilateral and a polygonal mesh have been used and two such meshes are shown

in figure (4.7). 2D bars of dimensions L=16, W=7 and a=3.5 for mode 1 problem and

L=16, W=7, a=2 and β = 60o for mixed mode problem have been considered. Other

material properties are: E = 2 GPa, ν = 0.3 and far field stress σ = 1 MPa. The

reference solution for edge crack in a plate under uniaxial loading is given by [48]

K = F (
a

W
)σ
√
πa (4.16a)

F
( a

W

)

= 1.12 − 0.231
( a

W

)

+ 10.55
( a

W

)2

− 21.72
( a

W

)3

+ 30.39
( a

W

)4

(4.16b)

where F is the geometry correction factor.
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Figure 4.6: Finite element model with boundary conditions. (a) Edge crack. (b) Oblique
crack.
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Figure 4.7: (a) Quadrilateral and (b) hexagonal structured mesh.
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The geometry factors for stress intensity factors for oblique crack under uniaxial loading

are computed from the curves given in Ref. [49].

KI = FIσ
√
πa; KII = FIIσ

√
πa (4.17)

for β = 60o

FI = 1.25; FII = 0.3875

The domain form of the interaction integral is used to extract the stress intensity

factors (SIFs) [50, 48] with a domain radius r = Rh (h is the size of the crack-tip element

and is defined as square root of the crack-tip element area). Two different values of J

domain factor R, namely R = 1.5 and R = 2.0 are considered. Details on the extraction

of SIFs in the X-FEM can be found in Ref. [4].

We use three different methods to compare the convergence of stress intensity factors.

All the three methods use triangulation scheme for integration over enriched elements.

The methods differ only in terms of use of integration scheme for unenriched elements.

In Method 1 we use standard isoparametric mapping with 2 × 2 Guass integration in

structured quadrilateral finite element mesh. In Method 2 we use optimal integration

scheme with SC mapping in structured quadrilateral finite element mesh. In method

3 we use optimal integration scheme with SC mapping for structured hexagonal finite

element mesh.

Figure 4.8a shows the convergence of three different methods for R = 1.5 for pure

mode 1 case. Method 3, that is the optimal integration scheme applied over hexagonal

mesh displays faster convergence when compared to two other methods. However in case

of factor R = 2.0 (fig. 4.8b) all the three methods shows more of less similar kind if

trends.

Distribution of 3 different types of stress, namely σxx, σyy and σxy, for pure mode 1

case is considered next. Figure 4.9 shows the element-wise (non-smoothed) distribution

of stresses in the vicinity of crack for converged results for method 2. We see the sudden

change in stress field across the boundaries of elements. Therefore the stress smoothing
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Figure 4.8: Convergence in mode 1 SIF for edge crack under uniaxial loading for (a) R
= 1.5. (b) R = 2.0.

(a) (b) (c)

Figure 4.9: Element wise stress distribution (non-smoothed) for straight edge-crack under
uniaxial loading for structured mesh using 4-node quadrilateral elements. (a) σxx. (b)
σyy. (c) σxy.
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(a) (b) (c)

Figure 4.10: Smoothed (nodal averaging) stress distribution for straight edge-crack under
uniaxial loading for structured mesh using 4-node quadrilateral elements. (a) σxx. (b)
σyy. (c) σxy.

(a) (b) (c)

Figure 4.11: Element wise stress distribution (non-smoothed) for straight edge-crack
under uniaxial loading for structured mesh using 6-node hexagonal elements. (a) σxx.
(b) σyy. (c) σxy.

(a) (b) (c)

Figure 4.12: Smoothed (nodal averaging) stress distribution for straight edge-crack under
uniaxial loading for structured mesh using 6-node hexagonal elements. (a) σxx. (b) σyy.
(c) σxy.
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is done using nodal stress averaging method. Figure 4.10 shows the smoothed stress

field near the crack for method 2. Figures 4.11 and 4.12 show the non-smoothed and

smoothed stress fields using method 3, respectively.
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Figure 4.13: Convergence in mixed mode SIFs for oblique crack under uniaxial loading.
(a) KI for R = 1.5. (b) KII for R = 1.5. (c) KI for R = 2.0. (d) KII for R = 2.0.

Figure 4.13 shows the convergence of mode 1 and mode 2 stress intensity factors

for the mixed mode problem. Figures 4.13a and 4.13b shows the convergence of mode

1 and mode 2 stress intensity factors with number of nodes, respectively. Here too the

Method 3 shows better convergence rate compared to two other methods. Almost similar

kind of results observed for factor R = 2.0. However, in latter case the oscillations in
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convergence curves are small compared to the former. This might be due to the fact that

stress gradients are very high near crack tip. Hence as the J domain radius is increased

J integral becomes more and more smooth.

(a) (b) (c)

Figure 4.14: Element wise stress distribution (non-smoothed) for oblique edge-crack
under uniaxial loading for structured mesh using 4-node quadrilateral elements. (a) σxx.
(b) σyy. (c) σxy.

(a) (b) (c)

Figure 4.15: Smoothed (nodal averaging) stress distribution for oblique edge-crack under
uniaxial loading for structured mesh using 4-node quadrilateral elements. (a) σxx. (b)
σyy. (c) σxy.

Figure 4.14 shows the element-wise (non-smoothed) distribution of stresses near to

the crack for converged results using method 2. Here too, we observe the sudden change

in stress field across the boundaries of elements. Figure 4.15 shows the smoothed stress

field in the vicinity of the crack using method 2. Figures 4.16 and 4.17 show the non-

smoothed and smoothed stress fields using method 3, respectively.
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(a) (b) (c)

Figure 4.16: Element wise stress distribution (non-smoothed) for oblique edge-crack
under uniaxial loading for structured mesh using 6-node hexagonal elements. (a) σxx.
(b) σyy. (c) σxy.

(a) (b) (c)

Figure 4.17: Smoothed (nodal averaging) stress distribution for oblique edge-crack under
uniaxial loading for structured mesh using 6-node hexagonal elements. (a) σxx. (b) σyy.
(c) σxy.



Chapter 5

Conclusions and Future Work

5.1 Summary of the Completed Work

Polygonal finite elements provide a versatile way to discretize complex geometries which

otherwise have been very difficult without compromising the mesh quality and accuracy

of results. The method presented in this paper works equally well for structured and

unstructured mesh with 4-node quadrilateral, 5-node pentagonal and 6-node hexagonal

elements. Also this is first time that successful attempt has been reported to ensure

the degeneracy of general polygon to quadrilateral elements with optimal integration

points. We show that highly accurate results are obtained without need for large number

of integration points. Namely for a typical problem, the strain energy is shown to

always converge to the analytical solution at the optimal rate, while previously proposed

methods may not converge. The standard problems of uniaxial and shear loadings have

been solved for various kinds of polygonal meshes using the optimal integration scheme

with very good convergence. Still the method proposed by us has one limitation. We

have optimized the integration points only for quadrilateral, pentagonal and hexagonal

elements. Higher-order approximations and polygons with more than 6 nodes schemes

should be investigated. The proposed method will find useful application in solving

elasticity problem with complex geometries, polycrystalline materials, biological tissues

and many others. Extension to 3D is not straightforward because of the absence of the 3D

56
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version of the SC mapping. By converting the volume integrals to boundary integrals

[8] using strain smoothing and then using the proposed scheme on each face of the

polyhedral element is a possibility. This has direct application to integrate discontinuous

terms appearing in the weak form of XFEM problems for cracks or material interfaces

for example.

We have also applied the new scheme for determination of pure mode 1 and mixed

mode stress intensity factors using polygonal finite elements. Convergence rates are also

comparable to other standard finite element methods. Error in calculated stress inten-

sity factors is less then 3 %. We applied the scheme only for edge cracks as they are

more severe compared to other kind of cracks. However the scheme can be extended

to any kind of cracks. The thesis also establishes the applicability of optimal integra-

tion scheme introduced in this thesis for polygonal finite elements to fracture mechanics

problems based on XFEM approach. We have only considered the structured quadri-

lateral and structured hexagonal mesh. But it should be possible to extend to method

to unstructured meshes as well. In fact the real application of the method lies in cases

where it becomes very difficult to mesh the geometries due to their complex shapes.

5.2 Application and Future Work

The proposed method will find useful application in solving elasticity problem with

complex geometries, polycrystalline materials, biological tissues and many others. Most

of the engineering materials have polycrystalline microstructure. Hence the method

could be used to model the physics of microstructures into the finite element model. The

proposed method could also be extended to find the natural frequencies of structures with

strong and weak discontinuities in XFEM framework. The another promising application

is to model the intergranular and intragranular crack growth in polycrystalline materials.
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