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Abstract

The finite element method is the ubiquitous choice to solve boundary-value problems

in solid mechanics. In two-dimensions, the constant strain triangular element and the

quadrilateral element are widely used in research as well as in industrial practice. Quadri-

lateral and triangular elements with higher order interpolants are also used to improve

accuracy. Polygonal finite elements provide greater flexibility in mesh generation than

quadrilateral or triangular elements and are better-suited for applications in solid me-

chanics which involve a significant change in the topology of the material domain. Polyg-

onal elements can be used in the analysis of polycrystalline material without further

discretization which is otherwise required in standard FEM. The development of finite

elements on irregular polygons has not been explored to any significant depth so far. In

this work, a new integration technique is used to integrate the weak form of the governing

partial differential equation over the polygon. Solving linear elastic fracture mechanics

(LEFM) problem using standard finite element method requires fine mesh, and geometry

of the mesh should conform with the crack geometry in the domain. For each crack, a

separate refinement to the crack is required to solve the LEFM problem with remeshing for

a new crack dimension. Mesh refinement and meshing can be avoided by using Extended

Finite Element Method, in which a back ground mesh without crack can be used to solve

the LEFM problem. In XFEM using Gauss quadrature method, elements can not have

more than four edges and convexity of the elements need to be ensured to have positive

jacobian. In this work an XFEM using polygonal finite element method is proposed using

the new integration scheme on polygon. This method avoids subdivision of elements for

integration having discontinuities, which is otherwise required in XFEM using standard
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finite element method. The overall approach is validated using a successful convergence

study of a elasto-static, free vibration and mode-I crack in a thick beam bending problem.
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Chapter 1

Introduction

1.1 Polygonal finite element method: An Introduc-

tion

The Finite Element Method (FEM) is a mathematical and numerical method to solve

physical problems governed by partial differential equations on a finite domain. Usually

the problems addressed using FEM are too complicated to be solved satisfactorily by

analytical methods. The problem may concern stress analysis, heat conduction, struc-

tural vibration, fluid flow or any of several other areas. The finite element procedure

produces many simultaneous algebraic equations, which are generated and solved on a

computer. Results are not always exact. However, errors are decreased by processing

more equations until the results become accurate enough to apply in the correspond-

ing engineering problems at reasonable cost. The finite element method originated as

a method of stress analysis. Today finite elements are also used to analyze problems

of heat transfer, fluid flow, lubrication, electric and magnetic fields, and many other

problems. The power of the finite element method resides principally in its versatility.

The method can be applied to various physical problems. The body analyzed can have

arbitrary shape, loads, and support conditions. The mesh can mix elements of different

types, shapes, and physical properties. This great versatility is contained within a single

1
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computer. User prepared input data controls the selection of problem type, geometry,

boundary conditions, element selection and so on.

In the beginning 1906, researchers suggested a ”Lattice analogy” for stress analysis. The

continuum was replaced by a regular pattern of elastic bars. Properties of the bars were

chosen in a way that caused displacements of the joints to approximate displacement of

points in the continuum. The method sought to capitalize on well-known methods of

structural analysis. Courant appears to have been the first to propose the finite element

method as we know it today. In a 1941 mathematics lecture, published in 1943, he used

the principle of stationary potential energy and piecewise polynomial interpolation over

triangular subregions to study the Saint-Venant torsion problem [1]. FEM now becomes

very powerful technique in stress analysis, structural vibration, heat flow, fluid flow and

several other areas. FEM is an approximate method, and accuracy of the solution can

be increased by mesh refinement. The extent of accuracy requirement depends upon the

nature and application of engineering problem. Very fine mesh should be used to have

better accuracy of the solution. Stress analysis and structural dynamics for simple ge-

ometry can be solved using analytical method and it is difficult to solve for the complex

geometries using analytical method. For such problems FEM can be used to solve the

structural dynamics and stress analysis problems.

Introduction and fast development of the finite element method drastically changed the

extent of application of Linear Elastic Fracture Mechanics (LEFM). FEM virtually had

no limitation in solving complex geometries and loading conditions, and soon it was ex-

tended to nonlinear materials and large deformations problems [2]. As a result, LEFM

solutions could now rely on powerful analytical tool in order to determine its fundamental

concepts and governing criteria such as crack energy release rate and the stress intensity

factor for any complex problem. General LEFM stability criteria could then be used to

asses the stability or propagation of an existing crack. Application of FEM into linear

elastic fracture mechanics has now expanded to almost all types of crack problems. But

handling discontinuity is a major problem to analyse a continua having discontinuity.

This problem can be minimized by meshing the domain in such a way that the crack
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geometry should conform the mesh geometry. Moreover mesh refinement is a difficult

task and method become very cumbersome for crack propagation problem. Parametric

studies and experimental observations have been resulted in the introduction of new

design codes for containing a stable crack. However, the essence of analysis remained

almost same: Basics concepts of LEFM combined with classical continuum based FEM

techniques through smeared or discrete crack models. After a few decades, a major break

through seemed to be evolving in the fundamental idea of partition of unity in the form

of the extended Finite Element Method (XFEM).

1.1.1 Various types of finite element methods

1. hp-FEM

The hp-FEM [5] combines adaptively elements with variable size h and polynomial

degree p in order to achieve exceptionally fast, exponential convergence rates. The

hp-FEM is a general version of the FEM, a numerical method for solving partial

differential equations based on piecewise-polynomial approximations that employs

elements of variable size (h) and polynomial degree (p). The origins of hp-FEM date

back to the pioneering work of Ivo Babuska et al [6] who discovered that the FEM

converges exponentially fast when the mesh is refined using a suitable combination

of h-refinements (dividing elements into smaller ones) and p-refinements (increas-

ing their polynomial degree). The exponential convergence makes the method a

very attractive choice compared to most other finite element methods which only

converge with an algebraic rate. Smooth functions can be approximated much

more efficiently using large high-order elements than small piecewise-linear ones.

In standard FEM one only works with shape functions associated with grid vertices

(the so-called vertex functions). In contrast to that, in the hp-FEM one moreover

edge functions (associated with element edges), face functions (corresponding to

element faces - 3D only), and bubble functions (higher-order polynomials which

vanish on element boundaries).
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2. Generalized finite element method

The Generalized Finite Element Method [7] (FEM) uses local spaces consisting of

functions, not necessarily polynomials, that reflect the available information on the

unknown solution and thus ensure good local approximation. Then a partition of

unity is used to bond these spaces together to form the approximating subspace.

The effectiveness of GFEM has been shown when applied to problems with do-

mains having complicated boundaries, problems with micro-scales, and problems

with boundary layers.

3. Extended finite element method (XFEM)

The extended finite element method (XFEM) [13], also known as generalized fi-

nite element method (GFEM) or partition of unity method (PUM) is a numerical

technique that extends the classical finite element method (FEM) approach by

extending the solution space for solutions to differential equations with discontinu-

ous functions.The extended finite element method (XFEM) is used to alleviate the

above shortcomings of the finite element method and has been used to model the

propagation of various discontinuities: strong (cracks) and weak (material inter-

faces). The principle idea behind XFEM is to retain most advantages of mesh-free

methods while alleviating their negative sides. Enriched finite element methods

extend, or enrich, the approximation space so that it is able to naturally reproduce

the challenging feature associated with the problem of interest: the discontinuity,

singularity, boundary layer, etc. It was shown that for some problems, such an

embedding of the problem’s feature into the approximation space can significantly

improve convergence rates and accuracy. Moreover, treating problems with dis-

continuities with eXtended Finite Element Methods suppresses the need to mesh

refinement and the need of remeshing the discontinuity surfaces, thus reducing

the computational costs and projection errors associated with conventional finite

element methods, at the cost of restricting the discontinuities to mesh edges.
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4. Spectral method

Spectral methods [4] are a class of techniques used in applied mathematics and sci-

entific computing to numerically solve certain partial differential equations (PDEs),

often involving the use of the Fast Fourier Transform. Where applicable, spectral

methods have excellent error properties, with the so called ”exponential conver-

gence” being the fastest possible.

PDEs describe a wide array of physical processes such as heat conduction, fluid

flow, and sound propagation. In many such equations, there are underlying ”basic

waves” that can be used to give efficient algorithms for computing solutions to these

PDEs. In a typical case, spectral methods take advantage of this fact by writing the

solution as its Fourier series, substituting this series into the PDE to get a system

of ordinary differential equations (ODEs) in the time-dependent coefficients of the

trigonometric terms in the series (written in complex exponential form), and using

a time-stepping method to solve those ODEs.

The spectral method and the finite element method are closely related and built

on the same ideas; the main difference between them is that the spectral method

approximates the solution as linear combination of continuous functions that are

generally nonzero over the domain of solution (usually sinusoids or Chebyshev

polynomials), while the finite element method approximates the solution as a linear

combination of piecewise functions that are nonzero on small subdomains. Because

of this, the spectral method takes on a global approach while the finite element

method is a local approach. This is part of why the spectral method works best

when the solution is smooth. In fact there are no known three-dimensional single

domain spectral shock capturing results. Modeling of elastic wave propagation in

plates given in [38], is based on the partition of unity approach, in which the approx-

imate spectral properties of the infinite dimensional system are embedded within

the space of a conventional finite element method through a consistent technique of

waveform enrichment. The technique is general, such that it can be applied to the

Lagrangian family of finite elements with specific waveform enrichment schemes,
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depending on the dominant modes of wave propagation in the physical system.

In the finite element community, a method where the degree of the elements is very

high or increases as the grid parameter h decreases to zero is sometimes called a

spectral element method.

The implementation of the spectral method is normally accomplished either with

collocation or a Galerkin approach.

5. Meshfree methods

Meshfree methods have been recently reviewed and classified in [3]. Meshfree meth-

ods are a particular class of numerical simulation algorithms for the simulation of

physical phenomena. Traditional simulation algorithms relied on a grid or a mesh,

meshfree methods in contrast use the geometry of the simulated object directly for

calculations. Meshfree methods exist for fluid dynamics as well as for solid me-

chanics. Some methods are able to handle both cases. Meshfree methods eliminate

some or all of the traditional mesh-based view of the computational domain and

rely on a particle (either Lagrangian or Eulerian) view of the field problem.

A goal of meshfree methods is to facilitate the simulation of increasingly demanding

problems that require the ability to treat large deformations, advanced materials,

complex geometry, nonlinear material behavior, discontinuities and singularities.

For example the melting of a solid or the freezing process can be simulated using

meshfree methods.

Meshfree (or ’meshless’ as this is also used) methods seem attractive as alternative

to finite element method (FEM) for the general engineering community, which con-

sider the process of generating finite element meshes as more difficult and expensive

than the remainder of analysis process.

6. Galerkin methods

In mathematics, in the area of numerical analysis, Galerkin methods are a class of

methods for converting a continuous operator problem (such as a differential equa-

tion) to a discrete problem. In principle, it is the equivalent of applying the method
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of variation to a function space, by converting the equation to a weak formulation.

Typically one then applies some constraints on the functions space to characterize

the space with a finite set of basis functions. Often when using a Galerkin method

one also gives the name along with typical approximation methods used, such as

Petrov-Galerkin method or Ritz-Galerkin method [8]. The approach is credited to

the Russian mathematician Boris Galerkin.

Mapped elements, such as the well-known isoparametric elements play a vital role in

the conventional Finite Element Method (FEM). In an effort to overcome the limitations

of FEM, mesh free methods were introduced. Although there are many different types

of meshfree methods, it seems consensual that they are in general superior to Finite El-

ement methods for problems where large transformations are of interest and when high

order continuity of the solution is required. However, it also seems clear from the lit-

erature that most meshfree methods, especially those relying on a weak form, are more

computationally expensive than finite elements. Handling discontinuities in meshfree

methods also seems more straightforward as in standard FEM because no meshing or

remeshing of the evolving discontinuities is required.

Melenk and Babu has introduced the extended (generalized) Finite element method

(XFEM) to bridge the gap between FEMs and meshfree methods. These methods share

advantages with both the meshfree and standard FEMs. They rely on simple underlying

polynomial shape functions (as in FEM) and are enriched by suitable functions (discon-

tinuous or other) to capture known features of the solution. These partition of unity

based Finite element methods, however, do not solve the problem associated with mesh

distortion mentioned above. What is more, they still require the domain to be discretized

(meshed) using a combination of triangles and quadrilaterals (in 2D), unless recourse is

made to implicit boundary definition, which causes additional difficulties in imposing

boundary conditions and ensuring an accurate definition of the boundary of the domain.

In an effort to alleviate the meshing requirement and mesh-distortion sensitivity of the

FEM, two recent avenues of investigation have spurred the interest of researchers:
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1. Smoothed Finite element methods

In this method there is no need for iso parametric mapping, and thus method yields

accurate results even for extreamly distorted meshes. This idea was proposed by

Liu [9] and developed for plates, shells, plate cracking and 3D continuum, 2D

elasto-plasticity and plate vibration and shown to yield accurate results.

2. Polygonal Finite element methods.

In a similar way to alleviate the constraints imposed on standard finite element

method, polygonal elements have gained of research interest. Polygonal elements

provide greater flexibility in meshing and better accuracy. Polygonal elements

also called n - gon elements (n is the number of vertices in the polygon). n -

gon elements can be used as a transition elements and polycrystalline material to

represent microstructure of polycrystalline alloys. However, approximation func-

tions on polygons are usually non-polynomial, which causes numerical integration

difficulties.

In standard Finite Element method, integration points can be located by simple trans-

formation of physical element to master element configuration. For n - gon element there

is no such transformation is available. In most of the polygonal finite element methods

Gauß integration is in exact, because the approximation space is non-polynomial. Similar

kind of difficulties arise in enriched FEM, such as XFEM, where non-polynomial func-

tions are used, or to integrate discontinuous functions over elements split by discontin-

uous functions over elements split by discontinuities. To integrate these non-polynomial

functions with a sufficient level of precision, in practice, many Gauß points are used.

Integration over the polygonal element has not reached to matured stage. Efficient and

robust integration scheme to integrate the weak form of differential equations over n -

gon element. So far there are two integration schemes are available to integrate over the

n - gon element.

1. Numerical integration of weak form over the n - gon described by Sukumar and

Tabarraei [10], in which irregular polygon is mapped to regular polygon and further
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subdivided into triangles. And then Gauß quadrature rule is applied over the

triangle to integrate the weak form. In this method there exist two level of mapping.

Meshing of the domain should ensure the convexity of the element to avoid negative

jacobian.

2. A new rule based on schawrz christoffel conformal mapping to integrate weak form

over then - gon proposed by Sundararajan et al [11]. In this method physical

element (n - gon element) is mapped onto a unit disk, preserving angle between

the vertices, using Schwarz-Christoffel conformal mapping. And then, integration

is carried over the unit disk [12] using various cubature rules. Here, only one

level of mapping is required and since, positivity of jacobian is always guaranteed

irrespective of convexity of the element, there is high flexibility in meshing.

1.1.2 Extended Finite Element Method

Modeling of fracture and failure remains one of the most challenging problems in me-

chanics. Finite element analysis using singular elements as well as enriched elements are

reasonably effective in the analysis of stationery cracks. To model a crack using these

methods, meshing should conform to the crack geometry and complexity further increases

if the crack is irregular. To avoid these difficulties an extended Finite Element Method

(XFEM) has been proposed by Belytschko and Dolbow [13]. In this method crack is mod-

eled using a background mesh and elements in which crack exists are enriched. Elements

used are of triangular or quadrilateral shapes. For domains having complex geometry

very fine mesh is required near the stress concentration regions. Moreover, convexity of

the element should be maintained to avoid negative jacobian. As a consequence cost of

computation is high for such complex geometry. Polygonal finite elements are a gener-

alization of triangular and quadrilateral finite element methods to meshes with n-sided

elements (n ≥ 3). Polygonal finite elements provide greater flexibility in meshing.
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1.2 Problem and Motivation

Though standard Finite Element Method (FEM) is the ubiquitous choice to solve the

boundary-value problems in solid mechanics, has following disadvantages

1. Static analysis and dynamic analysis of the structures for complex geometries re-

quire very fine mesh to model the geometry with matching wave length. Therefore

more number of elements are required to have better approximate solution.

2. Convexity of the element should be ensured to avoid negative jacobian.

3. Mesh used in the FEM should have less distorted elements and to have better

approximate solutions.

4. Quadrilateral elements or triangular elements do not provide greater flexibility in

meshing the complex geometries.

5. Handling discontinuity like cracks is a difficult task in the standard FEM. This

difficulty can be handled by using XFEM proposed by Belytschko and Dolbow [13]

which uses a back ground mesh without crack to model the crack. But for complex

geometries a fine mesh is required to have better approximate solution.

In this thesis work polygonal finite element method is developed as polygonal elements

provide greater flexibility in meshing complex geometries. And mesh distortion sensitiv-

ity, positivity of the jacobian are studied in this work.

1.3 Scope of the Thesis

The present work involves the formulation of the polygonal finite element using Schawrz-

Christoffel conformal mapping for static, free vibration and linear elastic fracture me-

chanics problems in structural mechanics. In Chapter 2 formulation about Schawrz-

Christoffel conformal mapping, derivation of jacobian, cubature integration rule over the

unit disk and construction of interpolation functions on the n-gon is given. In chapter 3
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polygonal finite element formulation for static and free vibration of a cantilever beam,

and the convergence of the method is studied. In chapter 4 formulation of Extended

polygonal finite element method using schwarz-christoffel conformal mapping for linear

elastic crack problems is given. Conclusion and future scope the work is given in chapter

5.



Chapter 2

Numerical Integration Of Weak

Form on Polygon

The governing equilibrium equations for a 2D static elasticity problem defined in the

domain Ω bounded by Γ and Γ =Γu ∪ Γt, Γu ∩ Γt = φ

∇T
s σ + b = 0 in Ω (2.1)

Where 0 is a null vector, σis the stress tensor and b is the vector of external forces.

The following are the prescribed boundary conditions

u = u in Γu (2.2)

nT σ = t on Γt (2.3)

where u = (ux, uy)
T is the prescribed displacement vector on the essential boundary

Γu;

t =(tx, ty)
T is the prescribed traction vector on the natural boundary Γt; n is the unit

outward normal vector. The discrete equations for this problem are generated from the

12
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Galekin weak form

∫

Ω

(5sδu)TD(5sδu)dΩ−
∫

Γ

(δuT )bdΩ−
∫

Γ

(δu)T tdΓ = 0 (2.4)

where u and δu are the test functions that belong to Sobolev space of functions and D

is the constitutive matrix. The Finite element method uses the following trial and test

functions:

uh(x) =
NP∑
i=1

Ni(X)di, δuh(x) =
NP∑
i=1

Ni(X)δdi (2.5)

where NP is the total number of nodes in the mesh.

Ni =


 Ni 0

0 Ni


 (2.6)

is the shape functions matrix of degree p associated with node i, di = [ui, vi]
T are the

degrees of freedom associated with node i By substituting the approximations, uh and

δuh, into the weak form and invoking the arbitrariness of virtual nodal displacements,

Eq.(2.5) yields the standard discretized algebraic system of equations:

Kd = f (2.7)

with the stiffness matrix given by

K =

∫

Ωh

BTDBdΩ (2.8)

and the load vector by

f =

∫

Ωh

NTbdΩ +

∫

Γt

NTt̄dΓ (2.9)

where Ωh is the discretized domain, formed by the union of elements Ωe. The stiffness

matrix K is symmetric, positive definite and with a strain-displacement matrix defined
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as

Bi(x) = 5sNi(x) =




∂Ni

∂x
0

0 ∂Ni

∂y

∂Ni

∂y
∂Ni

∂x


 (2.10)

where, i in Eq. (2.10) is an arbitrary node of the element. The size of the B matrix

depends on the number of nodes in an element. The finite element literature seldom

shows systematic ways to extend element formulation technology beyond quadrilaterals.

The Finite Element stiffness matrix given in equation (2.8) must be evaluated over the

element. In conventional finite element method an element does not have more than four

edges for 2D domains. In general, the GauB quadrature rule can be effectively used to

integrate the weak forms. To integrate weak forms over the n-gon, no general quadrature

rule is available which have optimal ways to choose its accuracy. The following three

methods can be used for integration of weak form over the n-gon element.

1. The method given by Sukumar and Tabarraei [10] is used to integrate over the n-

gon element. In this method a physical element is mapped to a canonical domain

and then the element is subdivided into n triangles and then the well known rules

are applied on a triangle for numerical integration. This method involves two

levels of isoparameric mapping: Physical element (Ωe) → (Ωo) →Triangle. The

standard triangular quadrature rule is used for integration over the triangle. More

over in isoparametric mapping the length measures are preserved, but not the

bounds of included angles,and so the positivity of the Jacobian needs to be ensured

additionally. To ensure the positivity of the Jacobian, the element should be a

convex element in this approach.

2. Another method to integrate over the n-gon element is the Smoothed Finite Ele-

ment Method (SFEM) [16], which is based on strain smoothening, introduced by

Chen[18] for mesh-free methods. The extension of strain smoothening approach

to finite element method leads to integration on boundary of the finite elements,

which avoids the requirement of isoparametric mapping. Even in case of the SFEM,

the n-gon element is subdivided into n triangles, solely for the purpose of numerical
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integration. Unlike in the triangulation scheme, the integration points lie on the

boundary of the triangles.

3. The other potential solution to integrate over the n-gon element is the method

developed by Sundarrajan et al [11]. In this method an n-gon element is mapped

to a unit disk using conformal mapping and various cubature rules can be used for

integration.

In this work this third method is used to integrate over the n-gon element. Mapping is

done using SCPACK [15] subroutines in FORTRAN.

2.1 Schwarz-Christoffel Conformal Mapping

In this section, we describe the method to map an arbitrary n-gon to a unit disk using

Schwarz-Christoffel conformal mapping (SCCM) and a few numerical integration rules

for 2-dimensional cases.

An important family of conformal maps has its roots in complex analysis. A conformal

map f (angle preserving) of a region in the complex plane is an analytic (smooth) function

whose derivative vanishes within the region[15]

Definition: If U ⊂ C, then a function f : U → C is conformal, if and only if it is

analytic and its derivative is nonzero in U .

Any simply connected domain in the plane with a boundary containing more than

one point can be conformally mapped onto the interior of a disk. Since the real physical

domain and the complex domain are isomorphic, there exists a bijective map (i.e. one

to one and onto) between the two, such that both the map and its inverse are structure

preserving. This follows from the following theorem:

Theorem: If U is a simply connected open subset of the complex plane C, then there

exists a bijective mapping f : U → A where, (A = z ∈ C : |z| < 1) is the open unit disk

The basic Schwarz-Christoffel formula [15] is a recipe for a conformal map f from

the complex upper half plane to the interior of a polygon. The polygon may have

cracks or vertices at infinity, its vertices are denoted by w1, w2, · · · , wn and the numbers
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α1π, α2π, · · · , αnπ are the interior angles at the vertices. The pre-images of the vertices

are real and are denoted by z1 < z2 < z3 < · · · < zn = ∞. The Schwarz-Christoffel map

f is given by

f(z) = A

∫ z n∏
j=1

(z′ − zj)
−βj dz′ + B (2.11)

In this equation z is the independent complex variable in the upper half-plane, the

zj are the “pre-vertices”, i.e., points on the real axis which are preimages of the corners

wj = f(zj) of the polygon, the αj are 1/π times the interior angles at those corners, and

A and B are two complex constants.

The Schwarz-Christoffel transformation therefore maps the upper half-plane onto a

polygonal region with interior angles αjπ. If ∞ is a prevertex or preimage, the vertices

are rotated so that f(∞) = wn, then the product has the upper limit n− 1. The lower

integration limit is left unspecified as it could be chosen arbitrarily in the upper half-

plane H+, which implies, any path from the lower limit to z could be chosen which lies

inside H+.
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Polygon in physical domain Unit disk in canonical domain

Figure 2.1: Mapping convex polygon from physical domain to unit disk in canonical
domain. Vertices of the polygon are represented as dark circles in the unit disk.
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Figure 2.2: Mapping concave polygon from physical domain to unit disk in canonical
domain. Vertices of the polygon are represented as dark circles in the unit disk.

Conformal maps can also be found between domains which are not simply connected.

Figure 2.1 shows a conformal mapping of an arbitrary polygon onto a unit disk. The

mapping is made with respect to a point in the complex plane, which forms the conformal

center. Either the geometric center is specified as conformal center, or it can be user

specified so that the user has control on distribution of integration points. The exact

solution to the integral Eq. (2.11) is available for very few class of problems. Eqs. (2.12)

and (2.13) give a conformal mapping function for a triangle and a square respectively.

A mapping to a plane triangle with angles πa, πb and π(1− a− b) is given by

z = f(ς) =

∫ ς dw

(w − 1)1−a(w + 1)1−b
(2.12)

And the upper half-plane is mapped to the square by

z = f(ς) =

∫ ς dw√
w(w2 − 1)

(2.13)
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In a similar way, the upper half-plane can be mapped to any arbitrary n-gon. Like-

wise, any arbitrary polygon can be mapped onto a unit disk. Figure (2.1) shows the

conformal mapping of a concave polygon to a unit disk. For problems with more ver-

tices, unless the polygon is symmetric, in general the SCCM integral in Eq.(2.11) has no

closed form solution [14]. In such cases, the SCCM involves the following three numerical

steps:

1. Finding points zk, known as parameter problem; these unknown parameters can be

found by solving a system of nonlinear equations that assert that the side length

of the n-gon are correct;

2. Calculating the SCCM integral in Eq.(2.11), integrals can be evaluated by a Com-

pound Gauß Jacobi quadrature rule.

3. Inverting the map. Map inversion can be evaluated by a Newton iteration. All

these numerical steps are implemented in FORTRAN using SCPACK subroutines

[15].

Let the conformal mapping from a unit disk to a polygon be defined by

w = f(z) (2.14)

In case of the proposed method, the polygon is first mapped on to a unit disk. This

is done by computing the inverse of the map given by Eq.(2.14). And the inverse is

computed by inverting the Schwarz Christoffel formula

df(z)

dz
= A (z′ − zj)

−βj (2.15)

to yield a formula
dz

df(z)
=

1

A
(z′ − zj)

βj (2.16)

Remark: This inversion is possible because the method relies on conformal map,

which means
∣∣∣df(z)

dz

∣∣∣ > 0 everywhere.
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Since a map is involved, the computation of the Jacobian associated with this trans-

formation is required and computed in the following manner. If r is the radius of the

canonical domain, then

∂w

∂x
=

∂w

∂r

∂r

∂x
,

∂w

∂y
=

∂w

∂r

∂r

∂y
. (2.17)

In the canonical domain, the value of r is computed as r2 = ξ2 + η2. The derivative with

respect to the spatial coordinates, X and Y , is given by




∂r
∂X

∂r
∂Y


 =




∂ξ
∂X

∂η
∂X

∂ξ
∂Y

∂η
∂Y








ξ
r

η
r





(2.18)

The mapping done using Eq.(2.18) assumes both the physical domain and the canonical

domain (unit disk) as imaginary planes. Let the physical domain be represented by (x, y)

and the canonical domain by (ξ, η). Let z = (ξ + iη) and because of the iso-morphic

property, we can write the mapping in complex form as f(z) : (ξ + iη) 7→ (x + iy). From

complex analysis [?], we have

df

dz
= f ′(z) =

∂x

∂ξ
+ i

∂y

∂ξ
=

∂y

∂η
− i

∂x

∂η
(2.19)

And, from Eq.(2.19), the mapping can be defined by the following expression




∂r
∂x

∂r
∂y


 =




∂ξ
∂x

∂η
∂x

∂ξ
∂x

∂η
∂x








ξ
r

η
r





= [J ]−1




ξ
r

η
r


 (2.20)

This procedure can be used to compute the Jacobian. In the proposed method, there is

only one level of mapping.

Remark: In the conformal mapping,
∣∣∣df(z)

dz

∣∣∣ > 0 everywhere and the mapping preserves

the included angle of the n-gon. Hence, the Jacobian is always positive irrespective of
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convexity.

2.2 Numerical Integration Rule

Once the mapping of an n-gon element onto unit disk is done using Schawrz-Christoffel

conformal mapping, then integration is carried on unit disk. The integration points

are obtained by employing cubature rules on a circle. These integration points are

then mapped onto the parent n-gon using SCCM formula given in Eq. (2.16). Various

cubature rules on a circle are given in this section.

2.2.1 Midpoint Quadrature Rule

In this method [19] the unit disk is divided into concentric circles and radial lines, then a

midpoint quadrature rule is applied for the area of the subdomains in the interior of the

disk. The integral is evaluated on each of the centroid of the subdomains as the area of

the subdomain multiplied by the integrand evaluated at the centroid of the subdomain.

The following approximation can be used to integrate f(x, y) on a disk Ω of radius Ro:

∫

Ω

f(x, y)dxdy '
nθ∑
i=1

nr∑
j=1

Aijf(rj cos θi, rj sin θi) (2.21)

where nθ is the number of sectors in which the disk is partitioned and nr is the number

of radial sub-divisions. Here,

rj =
j2 − j + 1/3

j − 1/2
∆r; θi = (i− 1/2)∆θ (2.22a)

∆r =
Ro

nr

; ∆θ =
2π

nθ

; Aij = (j − 1

2
)∆θ(∆r)2 (2.22b)

Where,r and theta are the polar coordinates.
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Gauß Chebyshev Rule

Peirce([17]) in his book provides an arbitrary polynomial accuracy of degree n = 4m+3,

m = 0, 1, 2, · · · , in x = r cos θ and y = r sin θ, where following approximation can be

used to evaluate the integral

∫ ∫

Ω

f(x, y)dxdy '
4(m+1)∑

i=1

m+1∑
j=1

Aijf(rj cos θi, rj sin θi) (2.23)

where

1. θi + 1− θi = 2π
k+1

, i = 1, 2, · · · 4(m + 1)

2. Aij = π
4(m+1)Pm+1

′r2
j

R2
0∫

0

Pm+1r2

r2−r2
j

dr2, j = 1, 2, · · · ,m + 1

3. r2
i are the m + 1 zeros of Pm+1(r

2), the Legendre polynomial in r2 of degree m + 1,

orthogonalized on [0, R2
o] .

Since Gauß-Chebyshev quadrature automatically arises in the θ direction, the integration

points are on equally spaced an radial lines and the weights are independent of their

angular positions.

Gauß Legendre Rule

The Gauß Legendre product rule on a unit disk is given by

∫ ∫

Ω

f(x, y)dxdy =

∫ Ro

y=−Ro

∫ X(y)

x=−X(y)

f(x, y)dxdy '
Nx∑
i=1

Ny∑
j=1

Aijf(xi, yj) (2.24)

where,

Nx and Ny are the number of integration points chosen along the x- and y- direc-

tions,respectively,

Aij = W x
i W y

j is the product of the usual Gaussian weights.

The Gauß integration can be applied by transforming the original coordinate system
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(r, θ) to the natural coordinate system (s, t) via isoparametric formulation. The center

of the local coordinate system (s, t) can be expressed as

rm =
1

2
(r1 + r2) (2.25a)

θm =
1

2
(θ1 + θ2) (2.25b)

Corresponding map is

s =
2(r − rm)

r2 − r1

=

(
r − r1+r2

r2−r1

)

r2 − r1

(2.26a)

t =
2(θ − θm)

θ2 − θ1

=

(
θ − θ1+θ2

θ2−θ1

)

θ2 − θ1

(2.26b)

The Jacobian matrix becomes

|J | =

∣∣∣∣∣∣∣∣∣

∂r
∂s

∂θ
∂s

∂r
∂t

∂θ
∂t

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

r2−r1

2
0

0 θ2−θ1

2

∣∣∣∣∣∣∣∣∣
=

1

4
(r2 − r1)(θ1 − θ2) (2.27)

The original equation is transformed into isoparametric form as

∫ θ2

θ1

∫ r2

r1

B(r, θ)DB(r, θ)drdθ =

∫ +1

−1

∫ +1

−1

B(s, t)DB(s, t)|J |dsdt (2.28)

where |J | is given by (2.27). Therefore, the numerical integration takes the form

∫ θ2

θ1

∫ r2

r1

B(r, θ)DB(r, θ)drdθ =
Nx∑
i=1

Ny∑
j=1

AijB(si, tj)DB(si, tj)
1

4
(r2 − r1)(θ1 − θ2) (2.29)

In case of the proposed method, the physical element is mapped onto a unit disk using

the SCCM and one of the above numerical integration rule can be adopted to numerically

integration the Eq. (5.12). The numerical integration for midpoint quadrature rule is



Chapter 2. Numerical Integration Of Weak Form on Polygon 23

given by

K =

∫

Ωh

BTDB =

∫ θ2

θ1

∫ r2

r1

B(r, θ)DB(r, θ)drdθ (2.30a)

'
nθ∑
i=1

nr∑
j=1

AijB(rj cos θi, rj sin θi)DB(rj cos θi, rj sin θi)|J | (2.30b)

where |J | is the determinant of the Jacobian matrix for the conformal mapping, given

by Eq. (2.20). Once the integration points are computed on a unit disk using one of the

above methods, an affine transformation is performed to obtain the integration points

on the physical domain.

The location of the integration points after mapping to physical element is shown in the

figure 2.3.
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Figure 2.3: Location integration points on the physical element and corresponding loca-
tion of the integration points on the unit disk in the canonical domain.

In this chapter mapping of an n-gon element from physical domain to a unit disk in the
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canonical domain based on Schwarz-Christoffel conformal mapping is given. Integration

of a function f(x, y) over the polygon is done after mapping the polygon to the unit disk,

and then various cubature rules to integrate over the unit disk is applied. This method

of integration is used in this work to integrate the weak form of the governing equation

and thus stiffness matrix. In this work Midpoint cubature rule is taken to integrate over

the unit disk.



Chapter 3

Interpolation Functions For

Polygonal Element

In chapter 2 numerical integration of weak form of governing equation on polygon based

on Schwarz-Christoffel conformal mapping, basics of Schwarz-Christoffel conformal map-

ping have been explained. As there involves a mapping, there is exist a jacobian. De-

riving the jacobian of the mapping is also given in the same chapter. Cubature rules to

integrate over the unit disk were explained. This chapter is devoted for the construc-

tion of interpolation functions for polygonal elements. Various methods for constructing

interpolation function for polygonal element are given in this chapter.

3.1 Interpolation Functions

In standard Finite Element Method, which uses isoparametric mapping, interpolation

functions are constructed on master element. To use polygonal element, interpolation

functions are required to be constructed on the polygon element. And these interpolation

function should satisfy the following properties:

1. Non-negative ness, 0 ≤ Ni(x) ≤ 1

2. Interpolation of nodal data, Ni(xj) = δ

25
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3. Partition of unit
n∑

i=1

= 1

4. Linear completeness, Ni(η)xi = x(η).

5. Smooth with in the domain.

Here N is the shape function.

The triangle and the quadrilateral are basic element shapes used in most two-dimensional

finite element methods. In general, if polygonal elements with more than four vertices

are available,which is new in any finite element computations, then it could significantly

reduce the problem of complex mesh, gradient errors and shape-sensitivity etc. The re-

moval of this restriction that domain can have n-gon shape has the potential to lead to

new developments in mesh generation and the finite element method. Polygonal finite

elements provide greater flexibility for the meshing of complex geometries, are potentially

useful for the modeling of polycrystalline materials, can serve as transition elements in

finite element meshes and are well suited for material design.

3.1.1 Conforming Interpolants On Polygons

Consider a polygonal domain Ω ⊂ R2 that is described by n nodes. Let ith node be pi and

coordinate of vertex-node i is xi = (xi, yi). Any point p with coordinate x = (x, y) ∈ Ω̄,

has a set of associated shape functions φi (x). An interpolation scheme for a scalar

valued function u : Ω̄ → R can be written as

uh(x) =
n∑

i=1

φi(x)ui

where ui are the unknowns at the n neighbors of point p. To use C 0 shape functions,

the interpolant uh should satisfy the following properties:

1. Applying the partition of unity to assure constant precision, and that φi(x) is non
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negative and bounded, one has

n∑
i=1

φi(x) = 1, 0 ≤ φi(x) ≤ 1

2. Interpolate nodal data:

φi(x) = δij

where δij is the Kronecker-delta. It states that the interpolated displacement at a

node recovers the nodal data: uh(x) = ui .

3. Linear precision or linear completeness:

n∑
i=1

φi(x)xi = (x)

From the above property, it can be concluded that the shape function can exactly

reproduce a linear function.

4. The shape function φi ∈ C∞ within the domain. Along the edges of the polygon,

the interpolant must be piece-wise linear (C 0 function), that is

uh(t) = tu1 + (1− t)u2, x = tx1 + (1− t)x2, x ∈ ∂Ω, t ∈ [0, 1].

The following methods can be used to build shape functions on a polygonal domain.

1. Shape functions using length and area measures [20],[10],[22],[21] (Like Wachpress

shape function, Metric coordinate, Rational Polynomial).

2. Natural neighbor shape function [25], [26], [23].

3. Maximum entropy approximant [24].

4. Barycentric coordinates on irregular n-gon [27],[28].
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In this work, Wachspress shape functions are used to construct interpolation function

on an n-gon element, as this satisfies the requirement of a interpolation function given

section 3.1.1.

3.1.2 Wachspress shape functions

Using the principles of projective geometry, Wachpress constructed rational basis func-

tions on polygonal domain. In this the algebraic equations of the edges are used to ensure

nodal interpolation and linearity on the boundaries. Wachpress proved that for an n-

gon these shape functions are rational polynomials. In general, for an n-sided convex

polygon, a Wachpress shape function N
(n)
i (x, y) is a polynomial of the following form:

Figure 3.1: Barycentric coordinates: Pi, Pi−1 and Pi+1 are the vertices of polygon. P
is the point in the polygon.

Nn
i (x, y) =

Pn−2(x, y)

Pn−3(x, y)
(3.1)

P(m)(x, y): m-degree polynomial in x, y

Wachspress shape functions have the following essential features:

• Each function is positive in the convex domain

• Each function is linear on each side of the convex n-gon
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• The set of functions exactly interpolates an arbitrary linear field

In [30], a simple expression is obtained for Wachspress’s basis function, which can be

written as

φw
i (x) =

wi(x)∑n
j=1 wj(x)

, (3.2a)

wi(x) =
A(pi−1, pi, pi+1)

A(pi−1, pi, p)A(pi, pi+1, p)
=

cot γi + cot δi

||x− xi||2 (3.2b)

where the last expression is due to Meyer et al [30]. In (3.2) A(a, b, c) is the signed area

of triangle [a, b, c] and γi and δi are shown in figure (3.1.2). We infer from (3.2) that for

φw
i (x) to be non-negative, the polygon must be convex (γi + δi < π). The angles γi and

δi are not explicitly computed, instead the vector cross and dot product formulae are

used to compute the cotangents. For instance, if the coordinates of the vertices of the

triangle [pi, pi+1, p] be (a1, a2), (b1, b2), and (c1, c2), respectively, then

cot δi =
(pi+1 − pi) · (p− pi)

|(pi+1 − pi)× (p− pi)| (3.3a)

=
(b1 − a1)(c1 − a1) + (b2 − a2)(c2 − a2)

(b1 − a1)(c2 − a2)− (c1 − a2)(b2 − a2)
=

C

S
(3.3b)

and its derivatives are

∂(cot δi)

∂c1

=
(b1 − a1)− cot δi(a2 − b2)

S
, (3.4a)

∂(cot δi)

∂c2

=
(b2 − a2)− cot δi(b1 − a1)

S
. (3.4b)

A similar procedure is adopted to compute cot γi that appears in (3.2). The Wachspress

shape functions are the lowest order shape functions that satisfy boundedness, linearity

and linear dependence on convex polyshapes [29]. In the figure 3.2 shows shape function

for a hexagon with Finite Element model placed at vertices.

Construction of interpolation function for polygonal element by various methods was

given in this chapter. In this work Wachspress shape function is used interpolation
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Figure 3.2: Wachspress shape function Ni for ith node on a hexagon

function for polygonal element. Wachspress shape functions satisfies the requirements of

an interpolation function given in section 3.1.1. Therefore, Wachspress shape function

is used as interpolation function in this work. Using the Wachspress shape function and

integration technique given in chapter 2 few bench mark problems like static and free-

vibration analysis of a cantilever beam are solved. The same method is also extended to

linear elastic fracture mechanics using polygonal element based on Schawrz-Christoffel

conformal mapping and overall convergence of the method is studied in the subsequent

chapters.



Chapter 4

Static and Free Vibration Analysis

Using Poly-Schwarz Christoffel

Conformal Mapping-FEM

In chapter 2 a new integration technique to integrate the weak form of governing equa-

tion over the polygonal element has been explained. And in chapter 3 construction of

interpolation function on the polygonal element has been explained. Using this new in-

tegration technique and interpolation function few bench mark problems like static and

free-vibration problem of a cantilever beam is solved and the overall convergence of the

method is examined in this chapter.

4.1 Static Analysis

4.1.1 Governing Equations and weak form

The governing equations and weak form for the static analysis is given in chapter 2 from

Eq. (2.1) to Eq. (2.7).
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4.1.2 Equilibrium Patch Test

To study the accuracy of the proposed method equilibrium patch test is performed.

Considering a uniaxial stress σ = 6.894757 kPa (1 Psi) under the condition of plane

stress applied in y direction on top of the unit square while essential boundary conditions

are applied at the bottom edge as shown in figure 4.2. The exact displacement [31] is

given as

u(x, y) =
ν

E
(1− x). (4.1a)

v(x, y) =
y

E
. (4.1b)

R.Ed =

√∫
Ω
(uh − uexact)2dΩ∫

Ω
(uexact)2dΩ

(4.2)

The polygonal mesh shown in Figure 4.1 is considered for the patch test. The relative

error in displacement norm Eq. (4.2) is (L2) is given in table 4.1. From this patch test

it can be concluded that the method converges as mesh is refined to fine mesh.

Figure 4.1: Polygonal mesh used for patch test. The domain is dicretized using hexagonal
elements.
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Figure 4.2: Geometry, loading and boundary conditions used for patch test. Far field
stress σ = 6.894757 kPa (1Psi) is applied.

Table 4.1: Relative error in displacement norm (Red) Eq. (4.2)

Number of nodes Red

46 1.666 × 10−3

154 5.133 × 10−5

628 5.607 × 10−5

944 5.380 × 10−6
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4.1.3 Bending Of Thick Cantilever Beam

A thick cantilever two-dimensional beam, having dimensions L = 10, D = 2 and B = 1,

subjected to parabolic shear equal to 100 at free end is examined for convergence study.

Young’s modulus of the material is equal to 3X10e7 and Poisson’s ratio is equal to 0.3 is

taken. Geometry, loading and boundary conditions are shown in figure 4.3. The exact

Figure 4.3: Geometry, loading and boundary conditions of thick cantilever beam used
for convergence study.

solution for displacements and stresses is available in Timoshenko and Goodier [32] and

given by:

u(x, y) =
Py

6EI

[
(6L− 3x)x + (2 + ν)(y2 − D2

4
)

]
(4.3a)

v(x, y) = − P

6EI

[
3νy2(L− x) + (4 + 5ν)

D2x

4
+ (3L− x)x2

]
(4.3b)

where I, the moment of inertia (second moment of area) is given by: I = D3/12 and E

and ν in 4.3 are given by

E =





E (plane stress),

E
1−ν2 (plane strain)

ν =





ν (plane stress),

ν
1−ν

(plane strain)
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The stresses corresponding to the displacements in (4.3) given by

σxx(x, y) =
P (L− x)y

I
(4.4a)

σyy(x, y) = 0 (4.4b)

σxy(x, y) = − P

2I

(
D2

4
− y2

)
(4.4c)

For this problem structured hexagonal mesh is developed. Convergence study has been

performed by increasing the number of elements. Relative error in displacement norm

and energy norm has been studied. Figure 4.5 shows the convergence of relative error

in displacement norm. It has been observed that the method converges to the exact

solution as number of elements increased.
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Figure 4.4: Domain discretization of cantilever beam with structured hexagonal mesh.
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Figure 4.5: Convergence in the Relative error in displacement norm Eq. (4.2) for the
cantilever beam with structured hexagonal mesh.

4.2 Free Vibration Analysis

4.2.1 Governing Equations and weak form

The governing equilibrium equations for a 2D dynamic problem defined in the domain

Ω

∇T
s σ + b = ρü in Ω (4.5)

Where 0 is a null vector, σ is the stress tensor and b is the vector of external forces.

The following are the prescribed boundary conditions

u = u in Γu (4.6)

nT σ = t on Γt (4.7)

where u = (ux, uy)
T is the prescribed displacement vector on the essential boundary

Γu;

t =(tx, ty)
T is the prescribed traction vector on the natural boundary Γt; n is the unit

outward normal vector. where ρ is the mass density. The discrete equations for the
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dynamic problem are generated from the Galerkin weak form

∫
(δu)T ρ(ü)dΩ−

∫

Ω

(5sδu)TD(5sδu)dΩ−
∫

Γ

(δuT )bdΩ−
∫

Γ

(δu)T tdΓ = 0 (4.8)

The Polygonal finite element method uses the following trial and test functions:

uh(x, t) =
NP∑
i=1

Ni(X)di(t), δuh(x) =
NP∑
i=1

Ni(X)δdi (4.9)

By substituting the approximations, uh and δuh, into the weak form and invoking the

arbitrariness of virtual nodal displacements, Eq. (4.8) yields the standard discretized

algebraic system of equations:

Md̈ + Kd = f (4.10)

with the mass and stiffness matrix given by

M =

∫

Ωh

NTρNdΩ, K =

∫

Ωh

BTDBdΩ (4.11)

and the load vector by

f =

∫

Ωh

NTbdΩ +

∫

Γt

NTt̄dΓ (4.12)

where Ωh is the discretized domain, formed by the union of elements Ωe. For free

vibration load vector f = 0. Therefore, equation (4.10) becomes

Md̈ + Kd = 0 (4.13)

Assuming the modal solution:

d(t) =
∑

d̂(ω)eiωt (4.14)

And substituting Eq.(4.14) in Eq. (4.13) we get

Kd̂ = ω2Md̂ (4.15)
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Eq.(4.15) is the eigen value problem which is solved for least natural frequency. In this

work Jacobi method is used to solve the Eq. (4.15).

4.2.2 Free Vibration Of Thin Cantilever Beam

A thin cantilever two-dimensional beam, having dimensions L = 100, D = 1 and B =

1, is examined for free vibration problem. Young’s Modulus of the material is equal

to 3 × 107 and Poisson’s ratio equal to 0.3 is taken. Convergence of relative error in

natural frequency is shown in figure 4.6. From this plot it can be concluded that method

converges to analytical natural frequency as number of nodes increases. Therefore, the

new integration scheme [11] based on Schwarz-Christoffel conformal mapping works fine

for the free vibration problem also.
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Figure 4.6: Convergence of Relative error in natural frequency for thin cantilever beam.

4.2.3 Free Vibration Of Thick Cantilever Beam

For this case, convergence is examined for

1. Rectangular elements.

2. Structured Polygonal elements.

A thick cantilever two-dimensional beam, having dimensions L = 10, D = 2 and B = 1,

is examined for free vibration problem. Young’s Modulus of the material is equal to
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3× 107 and Poisson’s ratio equal to 0.3 is taken. In this work convergence of normalized

L2 norm given in Eq. (4.16) for natural frequency with number of nodes for the thick

cantilever beam is studied and convergence plot is shown if figure 4.7. Convergence of the

normalized L2 norm is shown both for the rectangular elements and hexagonal elements.

As the number of nodes increases, the normalized L2 norm converges. Therefore, the

method converges for free vibration problem and thus the new integration scheme works

fine for the free-vibration problem (Eigen value problem). Normalized L2 norm used to

study the convergence of the method is:

Normalized L2 norm =

√∫
Ω

ψ2dΩ

Number of nodes
(4.16)
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Figure 4.7: Convergence of normalized L2 norm given in Eq. (4.16) for both rectangular
elements and hexagonal elements.

In this chapter the new integration technique based on Schwarz-Christoffel conformal

mapping have been applied on the few bench mark problems like static and free vibra-

tion analysis of a cantilever beam. The overall convergence of the method for both static

and dynamic case was studied and proved that the new integration technique works good
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to obtain stiffness and mass matrix and to solve static analysis and structural vibration

problems. Therefore, the method can be effectively used to analyze the polycrystalline

material, where each polycrystalline material can be taken as a polygonal element. More-

over, the method can be effectively used for complex geometries.As positivity of the ja-

cobian is always guaranteed irrespective of convexity of the polygon the method yields

good results even for distorted elements. In this method elements used were hexagonal

shape which are distorted elements when compared to the quadrilateral elements. Thus

the method can be effectively used even with the distorted elements which is not possible

in the standard FEM. In the next chapter the same integration technique is extended

and applied for linear elastic fracture mechanics problem and convergence of the method

is examined for the mode-I crack problem.



Chapter 5

Polygonal XFEM based on

Schwarz-Christoffel Conformal

Mapping

Solving Linear Elastic Fracture Mechanics (LEFM) problem using standard finite element

method requires fine mesh and geometry of the mesh should conform with the crack

geometry in the domain. For each crack a separate refinement to the mesh is required to

solve the LEFM problem with remeshing for a new crack dimension. Mesh refinement and

meshing can be avoided by using Extended Finite Element Method (XFEM) proposed

by Belytschko and Dolbow [33], in which a back ground mesh without crack can be used

to solve the LEFM problem. In XFEM using Gauss quadrature method, elements can

not have more than four edges and convexity of the elements need to be ensured to have

positive jacobian. In this chapter an XFEM using polygonal finite element method is

proposed and integration over the polygon is carried by Schwarz Christoffel mapping [15]

given in [11]. The overall approach is validated using a successful convergence study of

a mode-I crack in a thick beam bending problem.

41
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5.1 Extended Finite Element Method (XFEM)

Modeling of fracture and failure remains one of the most challenging problems in me-

chanics. Finite element analysis using singular elements as well as enriched elements

are reasonably effective in the analysis of stationery cracks. To model a crack using

these methods, meshing should conform to the crack geometry and complexity further

increases if the crack is irregular. To avoid these difficulties an extended Finite El-

ement Method (XFEM) has been proposed by Belytschko and Dolbow [33]. In this

method crack is modeled using a background mesh and elements in which crack exists

are enriched. Elements used are of triangular or quadrilateral shapes. For domains hav-

ing complex geometry very fine mesh is required near the stress concentration regions.

Moreover, convexity of the element should be maintained to avoid negative jacobian. As

a consequence cost of computation is high for such complex geometry. Polygonal finite

elements are a generalization of triangular and quadrilateral finite element methods to

meshes with n-sided elements (n ≥ 3). Polygonal finite elements provide greater flexibil-

ity in meshing. Integration over a polygonal element can be done using Polygonal finite

element method proposed by Sundararajan et al. [11] in which a polygon is mapped to

unit disk and integration is carried over the unit disk.

5.2 Governing equations and weak form

The governing equilibrium equations for a 2D static elasticity problem defined in the

domain Ω bounded by Γ and Γ =Γu ∪ Γt, Γu ∩ Γt = φ can be expressed as

∇T
s σ + b = 0 in Ω (5.1)

Where 0 is a null vector, σ is the stress tensor and b is the vector of external forces.

The following are the prescribed boundary conditions

u = u in Γu (5.2)
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Figure 5.1: A Schematic diagram showing a stable crack in a two-dimensional body
under global equilibrium.

nT σ = t on Γt (5.3)

nT σ = 0 on Γc (5.4)

where u = (ux, uy)
T is the prescribed displacement vector on the essential boundary

Γu; t =(tx, ty)
T is the prescribed traction vector on the natural boundary Γt and Γc is

the traction boundary; n is the unit outward normal vector. The discrete version of the

weak form for this problem are obtained using Galerkin approach as

∫

Ω

(5sδu)TD(5sδu)dΩ−
∫

Γ

(δuT )bdΩ−
∫

Γ

(δu)T tdΓ = 0 (5.5)

where u and δu are the test functions that belong to Sobolev space of functions and D

is the constitutive matrix. The Finite element method uses the following trial and test

functions:

uh(x) =
NP∑
i=1

Ni(X)di +
m∑

j=1

Nk(X)ψ(X)ak (5.6a)

δuh(x) =
NP∑
i=1

Ni(X)δdi +
m∑

j=1

Nk(X)ψ(X)δak +
m∑

j=1

Nk(X)δψ(X)ak (5.6b)
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where NP is the total number of nodes in the mesh, k is the number of enriched nodes,

ak is the set of degrees of freedom added to the standard finite element modal degrees

of freedom and ψ(X) is the discontinuous enrichment function.

Ni =


 Ni 0

0 Ni


 (5.7)

represents the shape functions matrix of degree p associated with node i, di = [ui, vi]
T

are the degrees of freedom associated with node i. By substituting the approximations uh

and δuh into the weak form and invoking the arbitrariness of virtual nodal displacements,

Equation (5.5) yields the standard discretized algebraic system of equations:

Kd = f (5.8)

with the stiffness matrix given by

Ke
ij =




Kuu
ij Kua

ij Kuc
ij

Kau
ij Kaa

ij Kac
ij

Kcu
ij Kca

ij Kcc
ij


 (5.9)

and the load vector by

fi =
[

fu
i fa

i fc1
i fc2

i fc3
i fc4

i

]T

(5.10)

d is a vector of nodal parameters:

dh =
[

d a c1 c2 c3 c4
]T

(5.11)

with

Krs
ij =

∫
Ωh (Br

i )
TD(Bs

j )dΩ (r, s = d, a, c) (5.12)

fu
i =

∫

Ωh

NibdΩ +

∫

Γt

Nit̄dΓ (5.13)
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fa
i =

∫

Ωh

NiHbdΩ +

∫

Γt

NiHt̄dΓ (5.14)

fbα
i =

∫

Ωh

NiFαbdΩ +

∫

Γt

NiFαt̄dΓ (5.15)

where Ωh is the discretized domain, formed by the union of elements Ωe. The stiffness

matrix K is symmetric, positive definite and with a strain-displacement matrix defined

as

Bu
i (x) = 5sNi(x) =




∂Ni

∂x
0

0 ∂Ni

∂y

∂Ni

∂y
∂Ni

∂x


 (5.16)

Ba
i (x) =




∂(NiH)
∂x

0

0 ∂(NiH)
∂y

∂(NiH)
∂y

∂(NiH)
∂x


 (5.17)

Bb
i =

[
Bc1

i Bc2
i Bc3

i Bc4
i

]
(5.18)

Bα
i (x) =




∂(NiFα)
∂x

0

0 ∂(NiFα)
∂y

∂(NiFα)
∂y

∂(NiFα)
∂x


 (5.19)

where, i in equation (5.16) is an arbitrary node of the element. The size of the B matrix

depends on the number of nodes in an element. To include the effect of interpolants, the

following shifting amendments are required.

Ba
i (x) =




∂(Ni[H(ξ)−H(ξi)])
∂x

0

0 ∂(Ni[H(ξ)−H(ξi)])
∂y

∂(Ni[H(ξ)−H(ξi)])
∂y

∂(Ni[H(ξ)−H(ξi)])
∂x


 (5.20)

Bα
i (x) =




∂(Ni(Fα−Fαi))
∂x

0

0 ∂(Ni(Fα−Fαi))
∂y

∂(Ni(Fα−Fαi))
∂y

∂(Ni(Fα−Fαi))
∂x


 (5.21)

where α = 1, 2, 3 and 4 in equation (5.21) and (5.19).



Chapter 5. Polygonal XFEM based on SC Conformal Mapping 46

5.2.1 Enrichment functions

The following crack face and crack tip enrichment were used in the present work.

1. ψ(x) = H(ξ) with H(ξ) heaviside function. Derivative of the heaviside function

is the Dirac delta function, which vanishes except at the position of the crack

interface, that is H,(ξ) = δ(ξ),

H,i(ξ) =





1 : at crack

0 : otherwise

As a result equation (5.17) can be rewritten as

Ba
i (x) =




∂(Ni)
∂x

H 0

0 ∂(Ni)
∂y

H

∂(Ni)
∂y

H ∂(Ni)
∂x

H


 (5.22)

2. The near tip enrichment function is given as ψ = Fα(r, θ). The near tip enrichment

functions are defined in terms of local coordinates (r, θ), that is,

Fα(r, θ) =
{ √

r sin θ
2
,
√

r cos θ
2
,
√

r sin θ sin θ
2
,
√

r sin θ cos θ
2

}
(5.23)

Derivatives of Fα with respect to the crack tip polar coordinates (r, θ) become

F1,r = 1
2
√

r
sin θ

2
, F1,θ =

√
r

2
cos θ

2

F2,r = 1
2
√

r
cos θ

2
, F2,θ =

√
r

2
sin θ

2

F3,r = 1
2
√

r
sin θ

2
sin θ, F3,θ =

√
r(1

2
cos θ

2
sin θ + sin θ

2
cos θ)

F4,r = 1
2
√

r
cos θ

2
sin θ, F4,θ =

√
r(−1

2
sin θ

2
sin θ + cos θ

2
cos θ)

(5.24)

The derivatives of Fα(r, θ) with respect to the local coordinate system (x′, y′) are
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defined as

F1,x′ = − 1
2
√

r
sin θ

2
, F1,y′ = 1

2
√

r
cos θ

2

F2,x′ = 1
2
√

r
cos θ

2
, F2,y′ = 1

2
√

r
sin θ

2

F3,x′ = − 1
2
√

r
sin 3θ

2
sin θ, F3,y′ = − 1

2
√

r
(sin θ

2
+ sin 3θ

2
cos θ)

F4,x′ = − 1
2
√

r
cos 3θ

2
sin θ, F4,y′ = 1

2
√

r
(cos θ

2
+ cos 3θ

2
cos θ)

(5.25)

Finally, the derivatives of Fα(r, θ) in the global coordinate system is obtained as

Fα,x = Fα,x′ cos(β) + Fα,y′ sin(β) (5.26a)

Fα,y = −Fα,x′ sin(β) + Fα,y′ cos(β) (5.26b)

Where β is the angle of crack path with respect to x-axis.

5.3 Stress Intensity Factor (SIF)

The stress intensity factor is the one of the important parameters representing the prop-

erties of crack tip. In this work the domain integral method proposed by Kim and

Paulino [35] is used to compute stress intensity factors. The path independent J integral

for the cracked body is defined as [34]

J =

∫

Γ

(
Wsδ1j − σij

∂uj

∂x′

)
njdΓ (5.27)

Where nj is the jth component of the outward unit normal to Γ, δ1j is Kronecker delta,

Ws is the strain energy density for linear elastic material, and Γ is an arbitrary contour

around the crack tip which encloses no other cracks and discontinuities. The Equation

(5.27) is not suited for the finite element implementation , and therefore an equivalent

form of J integral can be obtained by exploiting the divergence theorem in the form of
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domain integral approach given by Kim and Paulino [36]

J = −
∫

A

(
Wsδ1j − σij

∂ui

∂x′

)
∂q

∂xj

dΓ (5.28)

where A is the area surrounding the crack tip and q is the smoothly varying function. Γ

can be assumed as circle or rectangle whose center is at crack tip. In the present work

Γ is taken as a circle. As proposed by Dolbow and Moeset al [37], a simple function q,

varying linearly from q =1 at the crack tip to q = 0 at the exterior boundary Γ as shown

in figure 5.2, is used in the finite element model. Therefore, the elements away from the

boundary can be neglected. It is worth noting that the value within the parentheses in

Eq. (5.28) is not necessary to be evaluated in the area that q is constant (and so its

gradient vanishes). From a numerical aspect, in spite of the fact that the stress gradient

in elements containing a crack tip is usually very high, it is more appropriate to avoid

locating the contour on the elements including a crack tip. The method of interaction

integral, based on the definition of an auxiliary state, is used to extract mixed mode

stress intensity factors. Suppose there are two equilibrium states; state 1 corresponds

to the actual state and state 2 corresponds to an auxiliary state for the given problem

geometry. Auxiliary stress and strain states should be chosen so as to satisfy both the

equilibrium equation and the traction free boundary condition on the crack surface in

the area A. J-integral domain is shown in figure 5.2.

5.4 Numerical integration of weak form for Poly-

XFEM

The Finite Element stiffness matrix given in equation (5.9) must be evaluated over the

element. In conventional finite element method an element does not have more than

four edges for 2D domains. In general, the GauB quadrature rule can be effectively

used to integrate the weak forms. To integrate weak forms over the n-gon no general

quadrature rule is available. Again, for this poly-XFEM the new integration scheme
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Figure 5.2: J-integral domain for polygonal elements with crack. Nodal values for func-
tion q.

based on SC mapping proposed by sundararajan et al [11] is used to integrate the weak

form. Moreover, subdivision of elements which are divided by crack is not required in

the new integration scheme, which is otherwise required in XFEM based on standard

Finite Element Method.

5.5 Edge Crack With Mode-I Loading

In this paper the Poly-XFEM-SCCM has been applied to mode-I problem and conver-

gence of Mode-I Stress Intensity Factor for an edge crack has been established. For

this problem a polygonal mesh has been developed as shown in figure 5.4. A 2D bar

of dimensions L=10, D=3 and B=1 having mechanical properties E=3e7, ν = 0.3, was

considered for the edge crack problem. The geometry and loading and boundary condi-

tions are shown in figure 5.3 with σ = 100. Analytical value of the stress intensity factor
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for the edge crack is given by

KI = F (a/D)σ
√

πa (5.29)

and we shall use this analytical solution result as reference for convergence study. Where

a is the crack length, D is the plate width and F (a/b) is an empirical function given (For

(a/d) ≤ 0.6)

F (a/b) = 1.12− 0.231(a/D)10.55(a/D)2 − 21.72(a/D)3 + 30.39(a/D)4 (5.30)

Normalized stress intensity factor (SIF) is given as

Normalized stress intensity factor = KI/σ. (5.31)

Here σ is the far field stress. Convergence of the normalized mode-I SIF given in Eq.

(5.31) with increasing number of polygonal elements (hexagons in this example) is shown

in figure 5.6 and relative error in SIF is shown in figure 5.7. Error decreases as number

of polygonal elements are increased. From this convergence study it is observed that

the new integration scheme given in [11] yields good results for LEFM problem using

polygonal elements.

Figure 5.3: A 2D domain with edge crack subjected to axial loading σ at one of the edge.

In this work, the new integration scheme [11] for arbitrary polygons was used to
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Figure 5.4: Polygonal background mesh used for 2D edge crack problem.
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Figure 5.5: Enriched nodes indicated with square marks are the nodes surrounding the
crack tip. Nodes indicated with circle heaviside enriched. These nodes are involved in
the additional degrees of free dom due to XFEM.
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Figure 5.6: Convergence of normalized SIF given Eq. (5.31) for K-I with number of
elements for the edge crack problem.

15 20 25 30 35 40 45
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

√(Number of nodes)

P
er

ce
nt

ag
e 

er
ro

r 
in

 S
IF

(K
I)

Figure 5.7: The convergence of percentage error in SIF for K-I with number of nodes.
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Figure 5.8: Deformed shape of the bar with edge crack subjected to far filed stress σ
(Deformation magnification factor = 30).
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integrate singular, discontinuous functions in stiffness matrix and J integral to compute

stress intensity factor. It has been shown that the method converges with mesh refine-

ment. Moreover, further subdivision of elements can be avoided in this new integration

approach. As elements used are polygon, the method can be effectively used to analyse

the polycrystal structural behavior. Moreover, positivity of jacobian is always guaran-

teed whether the element is convex or concave, the method can be effectively used for a

mesh having distorted elements.



Chapter 6

Conclusions and Future Work

6.1 Summary on the completed work

In the context of two-dimensional elasto-static and free vibration problem using polyg-

onal finite element method based on Schwarz-Christoffel conformal mapping was pre-

sented. And in the context of linear elastic fracture mechanics, the enriched polygonal

finite element method, called polygonal eXtended Finite Element Method (poly-sccm-

XFEM), was presented using the same integration method. The method has been suc-

cessfully applied to static, free vibration and LEFM problem and convergence of the

method was shown. It has been proved that there is no need for further subdivision of

elements having crack in the new integration scheme.

In this work polygonal element in physical domain is mapped to unit disk using

Schwarz-Christoffel conformal mapping. Since positivity of jacobian is always guaranteed

irrespective of the element convexity, the method can be effectively used to distorted

elements. A FORTRAN code using SCPACK subroutines together with non-linear

equation solver, banded solver and banded eigen value solver etc., was developed to solve

polygonal Finite Element Method based on Schwarz-Christoffel conformal mapping for

static, free vibration (eigen value problem) and LEFM problem.

The main advantages of the method are: (1) only one level of mapping is required,

(2) positivity of jacobian is always guaranteed, and (3) subdivision of elements which
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are having crack is not required for integration.

6.2 Application and Future Work

This thesis work could be considered as a initial step in the way to learn and apply

the polygonal finite element and poly XFEM to real applications. The method has

been developed here in two dimensions, and a more challenging project would be to

extend to three dimensions. Polycrystalline materials have crystal structures in the

form of polygonal shapes. To analyse the polycrystal structure using standard Finite

Element Method, each crystal is again subdivided into finite elements. Using Poly-

SCCM method, each element can be taken as polygonal element. Interface and grain

boundary effects are to be considered in the formulation. Since Poly-SCCM can also be

applied to LEFM problems by using enrichment functions, polycrystalline material with

crack can be modeled. The method can be extended to find the natural frequency of a

structure having strong or weak discontinuity.
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